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ABSTRACT 

This paper presents a method to mitigate high latency in the teleoperation of unmanned ground systems through display prediction 

and state estimation. Specifically, it presents a simulation environment which models both sides of the teleoperation system in the 

laboratory.  The simulation includes a teleoperated vehicle model to represent the dynamics in high fidelity.  The sensors and 

actuators are modeled as well as the communication channel.  The latency mitigation approach is implemented in this simulation 

environment, which consists of a feed-forward vehicle model as a state estimator which drives a predictive display algorithm.  These 

components work together to help the operator receive immediate feedback regarding his/her control actions.  The paper contains 

a technical discussion of the design as well as specific implementation.  It concludes with the presentation of some experimental 

data which demonstrate significant improvement over the unmitigated case. 

 

INTRODUCTION 
One of TARDEC’s top objectives is to lead the Army and 

DoD Ground Vehicle Community in the research, 

development, engineering, demonstration and fielding of 

Unmanned Ground Vehicle (UGV) systems.  Teleoperation is 

a near-term technology which has the potential to be a quick-

win for UGVs.  It is and has already been employed in the 

cases of small UGVs (S-UGV) performing Counter 

Improvised Explosive Device (C-IED) and Explosive 

Ordinance Disposal (EOD) missions.  In these cases the 

speeds are low and the operator is usually in close proximity 

to the S-UGV yielding low latency and responsive control.  

Long-distance teleoperation on the other hand, introduces 

significant latency which degrades the operator’s ability to 

drive/control the vehicle.  As such, the mitigation of this 

latency is the most fundamental challenge to achieving 

teleoperation under high latency.  Consider the “basic” 

teleoperation configuration in Figure 1.  Under low-latency 

the human operator functions as they would in an actual 

vehicle, however, under latencies of more than 200-300 ms, 

the operator is forced to change his/her strategy to a “move 

and wait” approach, which significantly degrades 

performance and lowers the achievable top speed. 

This paper presents a method to mitigate high latency 

through display prediction and state estimation. This 

approach leverages and extends techniques developed for 

long-haul integration of hardware in the loop (HITL) systems 

over the Internet [1].  Specifically, it presents a simulation 

environment which models both sides of the teleoperation 

system in the laboratory.  The simulation includes 

teleoperated vehicle model to represent the dynamics in high 

fidelity.  The sensors and actuators are modeled as well as the 

communication channel.  The latency mitigation approach is 

implemented in this simulation environment, which consists 

of a feed-forward vehicle model as a state estimator which 

drives a predictive display algorithm.  The state estimator 

consists of a reduced order model which seeks to achieve an 

immediate estimate of how the vehicle will respond to the 

commanded inputs.  It furthermore contains a correction term 

which tracks the relevant vehicle states over the long-term.  

The predictive display uses perspective transformation 

techniques to predict what a camera would see from a 

different location given an existing frame.  These components 

work together to help the operator receive immediate 

feedback regarding his/her control actions 

This paper presents the overall architecture of the mitigation 

approach as well as development of the mathematical 

algorithms used for the state estimator and predictive display.  

It continues with a description of the simulation 

implementation of the approach and finishes with 

 
Figure 1.  Basic teleoperation configuration with unmitigated delay, D. 
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experimental comparisons of the state estimator and 

predictive display performance as compared to both the ideal 

and the unmitigated cases. 

 

BACKGROUND 
The negative impact of delay on the performance of 

teleoperated UGVs is well established in the literature [2], [3].  

Delays in closed-loop control systems are one of the well-

known sources of degraded performance and/or stability.  

Although, in the case of teleoperation, the human-in-the-loop 

is a stabilizing factor and provides robust compensation 

against instability, the human’s ability to respond to the visual 

inputs begins to degrade at delays above 50ms and 

performance is so degraded at 200-300 ms that the operator 

must change his/her control approach from continuous steer 

to the slower and more error prone “move and wait.”  The 

“move and wait” approach requires the operator reduce speed 

to mitigate against the delay. 

Various approaches have been used to mitigate high latency.  

TARDEC first encountered this problem as they were 

developing their duty cycle experiments [4], [5], [6].  In this 

approach, they used a high-fidelity model to serve as a state 

predictor to estimate the system’s response in the future.  

Subsequently, TARDEC, along with the University of 

Michigan, began to develop additional methods of 

quantification of performance [7], [8], [9] and independence 

from and explicit model [10], [11], [12], [13], [14], [15].  

These methods have transitioned to the problem of 

teleoperation in the presence of substantial time delays [16].  

Related to the problem of predicting system behavior in the 

presence of delays, is the challenge of incorporating the 

prediction into the control algorithm.  Some methods strive to 

place the predictors in-line either predicting a future state of 

the system or of the operator [16].  Since the standard 

teleoperation scenario incorporates a video feed being sent 

back to the operator, this is still delayed by the amount of 

transport delay between the vehicle and the operator.  

Furthermore, the video’s data, being a series of raster images, 

is not subject to explicit prediction because its values are not 

the result of a natural evolution of system states.  In this case, 

researchers have undertaken methods to present information 

in the video stream to help the operator understand the true 

state of the system.  In these cases, many have undertaken to 

overlay the display with graphics to include vehicle 

surrogates and lane markers [17], [18].  Others have 

undertaken to physically manipulate the video frames to 

estimate what the driver would see if the stream were not 

delayed.  Lovi, et al. have developed methods for fixed base 

manipulators in a manufacturing environment [19].  

Rachmielowski, et al. have developed similar methods [20].  

Royer, et al. used vision systems to localize a mobile robot 

[21].  Cobzas, et al. have used predictive displays to estimate 

and reconstruct geometry [2].  Kelly, et al. developed a 

predictive display approach using vision and LIDAR to fully 

construct a 3D scene including geometry and vision [22].   

This work seeks to develop a state estimator and predictive 

display system which (1) requires minimal intervention on the 

vehicle and (2) which is as simple as possible.  Furthermore, 

it seeks to present feedback to the operator in the most natural 

way.  The predictive display approach is predicated on the 

assumption that a vehicle camera scene at time 𝑡 is very 

similar to a prior scene (i.e. at time 𝑡 − 2𝐷).  This approach 

seeks to predict a current view from a past view using a 

predictive model in order to adjust the vantage point.  This 

paper first discusses the mathematics behind the approach.  It 

then discusses the simulation environment setup to evaluate 

it.  It presents some experimental data and finishes with 

conclusions. 

 

APPROACH 
The top-level approach to developing this system is 

illustrated in Figure 2.  Building upon the fundamental 

elements shown in Figure 1, the added components are the 

State Estimator (SE) and the Predictive Display (PD).   

The SE functions in two modes simultaneously: 

feedforward and feedback.  In feedforward mode the SE 

accepts the driver commands in the form of throttle, brake and 

steer (T, B, S) and (using the current state) predicts an 

immediate response.  Since the SE runs at 100Hz, it has a very 

responsive reaction to the driver commands, on the order of 

10 ms.  This feedforward mode is based on a very simplified 

form of the vehicle dynamics as it is understood that high-

fidelity is not needed because (1) terrain information is not 

known and (2) its prediction horizon is on the order of the 

round trip delay, 2D.  If it were only operating in feedforward 

mode the states would drift from the actual values, so there is 

a correction term which keeps the states roughly in-line with 

the states of the vehicle.  Finally, the SE maintains a record of 

states so that it can look back to a past state to obtain the 

relative motion between the two. 

 
Figure 2. Block diagram of predictive display and state estimation approach. 
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The PD consumes the predicted state information from the 

SE as well as the raw video stream from the vehicle.  The PD 

operates under the assumption that the scene observed at time 

t will be very similar to that observed at t-2D.  It therefore 

asks the SE to give the difference in position from time t-2D 

to time t.  It then uses this information to manipulate the latest 

video frame (which is 2D seconds old) to give a best estimate 

of what the operator would see as if there were no delay.  This 

then is passed to the OCU for display to the operator. 

 

STATE ESTIMATOR 
In this section the state estimator (SE) is derived.  The 

coordinates for the state estimator are illustrated in Figure 3.  

The State Estimator is a planar model with three degrees of 

freedom defined by 𝒑𝑘 = [𝑥𝑘 𝑦𝑘]𝑇 and 𝜃𝑘, where time is 

discretized with the index k.  In this system, the state is 

represented as 𝒙𝑘 = [𝒑𝑘
𝑇 𝜃𝑘]

𝑇. These are stored in the global 

coordinate system denoted by the subscript A.  The local 

coordinate system, denoted by B, is used to update the rate 

states which are then translated into the global frame for 

integration.  The rates are denoted as 𝑦̇𝐵 and 𝜃̇.  The state 

estimator feedforward dynamics consist of a longitudinal 

model and a lateral/yaw model.  The inputs to the vehicle 

coming from the OCU are denoted as throttle, tk, brake, bk, 

and steer, sk, and are passed as unitless values normalized to 

a maximum of 100. The equations of motion are modeled as 

continuous differential equations and then discretized using 

the Euler approximation.  The acceleration equations are as 

follows: 

 

 𝑦̈𝐵 =
1

𝑀
(𝑓𝑝(𝑡𝑘, 𝑦̇𝐵  ) + 𝑓𝑟(𝑏𝑘 , 𝑦̇𝐵) + 𝑓𝑔(𝜒)) (1) 

 

and 

 𝜃̈𝐵 =
1

𝐼
𝑓𝑠(𝑠𝑘 , 𝑦̇𝐵 ). (2) 

 

These accelerations are integrated to obtain velocity states 𝑦̇𝐵 

and 𝜃̇𝐵, which are then translated into the global frame using 

the rotation matrix 𝐑𝐴
𝐵 yielding 

 

 𝒑̇𝐴 = 𝐑𝐴
𝐵 [

0
𝑦̇𝐵

]. (3) 

 

These are integrated to yield the new global position 𝒙𝑨 and 

𝜃𝑨 which are then stored (along with the corresponding time 

𝑡𝑘) in a circular buffer for later use.  The corresponding 

homogeneous matrix 𝐇𝐴
𝐵 = [

𝐑𝐴
𝐵 𝒑𝑘

𝟎𝑇 1
] represents the 

combination of the rotation and translation of the local 

coordinate system, B. 

 

Longitudinal Dynamics 
The longitudinal dynamics, governed by 𝑓𝑝(𝑡𝑘, 𝑦̇𝐵  ), 

𝑓𝑟(𝑏𝑘 , 𝑦̇𝐵), and 𝑓𝑔(𝜒), determine the instantaneous speed of 

the vehicle.  Most problems with teleoperation over a high-

latency communications channel have to do with over-

correction of steer direction and not speed, mostly because the 

vehicle is less sensitive to throttle and brake than it is to steer.  

That being said, because turning rate is dependent on speed, 

it is important that the speed be accurate to assure good yaw 

rate estimates.  The equations for the longitudinal model use 

the illustration in Figure 4.  There are three components of the 

force which act longitudinally.  First 𝑓𝑝 accounts for the 

propulsion force which is dependent on the throttle input and 

the velocity of the vehicle.  With the goal of being as simple 

as possible, the following equation is used for the propulsion 

forces 

 

 𝑓𝑝 = 𝑀𝐴𝑚𝑎𝑥
|𝑉𝑚𝑎𝑥−𝑦̇𝐵|

𝑉𝑚𝑎𝑥

𝑡𝑘

100
, (4) 

 

where 𝑀 is the vehicle mass, 𝐴𝑚𝑎𝑥 is the maximum 

acceleration available to the vehicle, and 𝑉𝑚𝑎𝑥  is the 

maximum velocity of the vehicle and 𝑡𝑘 ∈ [0,100].  Note that 

this is intentionally designed to be governed by a few high-

level parameters.  Likewise the forces which oppose motion 

are lumped into 𝑓𝑟 and these include the braking and drag.  

These are again modeled as simply as possible 

 
Figure 3. Coordinate system of the State Estimator. 
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Figure 4.  Forces governing the longitudinal degree of freedom. 
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 𝑓𝑏 = {
−𝑀𝐵𝑚𝑎𝑥   g 𝑦̇𝐵

𝑏𝑘

100
, |𝑣| > 0.1

0, otherw  e
, (5) 

 

where 𝑀 is the vehicle mass, 𝐵𝑚𝑎𝑥  is the maximum braking 

acceleration, 𝑏𝑘 ∈ [0,100] is the brake command, and 

  g 𝑣 = 𝑣
|𝑣|
, 𝑣 ≠ 0 returns the sign of its argument.  The drag 

forces are 

 

 𝑓𝑑 = −
𝐴𝑓𝐶𝑑

 
𝜌|𝑦̇𝐵|𝑦̇𝐵, (6) 

 

where 𝐴𝑓 is the cross sectional area, 𝐶𝑑 is the drag coefficient, 

and 𝜌 is the density of air. 

Finally gravity component due to grade is  

 

 𝑓𝑔 = −𝑀𝐺    𝜒, (7) 

 

where 𝐺 is the acceleration due to gravity (i.e. 9.8 m/s2), 𝜒 is 

the pitch angle of the vehicle. 

 

Lateral/Yaw Dynamics 
Lateral/yaw dynamics are illustrated in Figure 5.  As 

discussed, it is more important for this to be accurate since a 

vehicle is typically much more responsive to steering inputs 

than to longitudinal inputs.  Based on the kinematics shown 

in the figure, it is reasonable to use 𝜃̇ = 𝑦̇𝐵
𝐵

ta 𝜑, however, 

the form shown in equation (2) is desirable because the 

correction term can then work through an integrator rather 

than directly on the state.  In that case  

 

 𝑓𝑠 =
𝐼

Δ𝑡
(𝑦̇𝐵

𝐵
ta (𝛽

𝑠𝑘

100
) − 𝜃̇) (8) 

 

where 𝐼 is the yaw moment of inertia (note that the equations 

are structured such that 𝐼 does not matter), 𝐵 is the wheel base, 

𝛽 is the steering scale factor which accounts for gain and 

conversion to radians, 𝑠𝑘 ∈ [−100, 100] is the steer 

command, 𝜃̇ is the current yaw rate, and Δ𝑡 is the time step of 

the dynamics model.  (Note that the relationship to Figure 5 

is that  𝜑 = 𝛽
𝑠𝑘

100
.) 

 

State Correction 
Regardless of the accuracy of the feedforward model, states 

tend to drift.  It is therefore necessary to add a feedback term.  

As such, the two terms that are subject to correction are the 

speed, 𝑦̇𝐵, and the yaw rate, 𝜃̇.  First note that the design 

employs remote error computation.  In this method, the 

estimated state is sent to the vehicle along with the vehicle 

commands.  The estimated state is then compared to the actual 

state on the vehicle and the error is sent back to the OCU.  In 

this way, the error computation is uninfluenced by time skew.  

This approach is illustrated in Figure 6(b) as compared to the 

skewed computation (Figure 6(a)).  The error is then used to 

close the gap between the estimated and measured states, 

understanding that it is 2D seconds old.  The rate of correction 

must account for the arrival of new error information every 

10 ms (i.e. the state estimator runs at 100 Hz).  The correction 

gain is therefore set so that the error will be closed in about 

100ms.  Equations (1) and (2) then become 

 

 𝑦̈𝐵 =
1

𝑀
(𝑓𝑝(𝑡𝑘, 𝑦̇𝐵  ) + 𝑓𝑟(𝑏𝑘 , 𝑦̇𝐵) + 𝑓𝑔(𝜒)) −  𝑣𝑒𝑦̇𝐵

 (9) 

 

and  

 

 𝜃̈𝐵 =
1

𝐼
𝑓𝑠(𝑠𝑘 , 𝑦̇𝐵 ) −  𝑦𝑒𝜃̇𝐵

 (10) 

 

where  𝑣 and  𝑦 are the gains for the correction terms.  In this 

work they are both set to 10. 

 

 
Figure 5. Illustration of the lateral/yaw estimator. 
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of longitudinal performance where T(t) represents the throttle command and 

v(t) represents the velocity.  The top diagram (a) represents error computation 

on the OCU/estimator side where the computation is skewed by 2D seconds 
and the bottom diagram (b) represents error computation on the vehicle side 

which is not skewed. 
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PREDICTIVE DISPLAY 
The basic idea of the predictive display is illustrated in 

Figure 7.  The top of the figure illustrates two positions of the 

camera mounted on the vehicle.  The first position shows the 

video frame represented with no delay.  The second position 

shows the camera corresponding to forward motion.  The 

basic idea of the predictive display is that the frame is (in 

concept) projected onto the ground plane and the far plane.  

The position is then moved forward by 2D according to the 

speed.  The image is then projected back onto a virtual image 

plane to account for the forward motion.  This gives a 

reasonable estimate as to what the operator will see at a time 

that is advanced 2D into the future.  How this works with an 

actual image is shown on the bottom of Figure 7.  From left 

to right is shown the original image, the projection of the 

moved camera back onto the image plane, and the subsequent 

transformed image.  Figure 7 only illustrates longitudinal 

motion.  To fully account for planar motion, the approach 

incorporates lateral and yaw motion as well.   

The predictive display is configured with three coordinate 

systems as shown in Figure 8.  The global frame denoted by 

“0” represents the notional location of the vehicle when the 

video frame was grabbed.  It represents the no-delay case.  It 

is also the frame in which the ground plane and far plane 

remain fixed.  (Note: It does not correspond to the frame A in 

the vehicle state estimator as shown in Figure 3.) The vehicle 

frame denoted by “1” represents the location of the vehicle 

after its position has evolved over the round-trip delay of 2D.  

The camera frame denoted by “2” represents the location of 

the camera in the vehicle frame and it is fixed with respect to 

the vehicle (although in general it does not need to be).  The 

frame “2’” represents frame “2” with respect to the global 

frame “0”.  Also shown in Figure 8 is the image plane and the 

trace of the four corners of the image plane onto the ground 

and far planes represented by black lines and red traces on the 

ground and far planes. 

The camera coordinates are illustrated in Figure 9.  There 

the image plane is located in physical units in the camera 

coordinate system.  The image plane is translated to pixel 

units as a raster.  (XGA resolution of 1024x768 is used in the 

sequel.)  Conversion between raster and image plane 

coordinates can be found in any computer vision text such as 

Szeliski [23]. 

The steps associated with the perspective transformation are 

illustrated in Figure 10.  These steps are described in the 

remainder of this section.   

 

 
Figure 7. Illustration of the main idea of the predictive display.  The top 

shows how the original scene is projected onto the ground plane and far 

plane.  The bottom shows at a high-level how this information is used to 

manipulate the video frame. 
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Figure 8.  Definition of the three coordinate systems used for the predictive 

displays.  The global system denoted by “0” represents the coordinates from 

which the original frame was captured.  The vehicle coordinate system 

denoted by “1” (corresponds to B) represents the position of the vehicle after 

2D seconds.  The camera coordinate system “2” represents the location of the 

camera with respect to the vehicle. 
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Figure 9.  Camera model and coordinate system.  The upper left figure 

illustrates the location of the image plane in the camera coordinate system.  
The lower-right figure illustrates the raster coordinates.  The image plane and 

raster correspond, but are measured in physical units and pixels respectively. 
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Step 1: Mapping of points A, B, E, F 
This step may be done in preprocessing as long as the 

camera is fixed to the vehicle.  First define camera parameters 

such as field of view 𝜗 and aspect ratio 𝛼.  The height and 

width of the image plane are, 

 

 𝑤 = 2 ta 
𝜗

 
, 

 ℎ = 𝛼𝑤, (11) 

𝜑 = 2 ta −1  

 
, 

 

where 𝑤 and ℎ are the width and height (in meters) of the 

image plane and 𝜑 is he vertical field of regard of the camera.  

Capital letters 𝑊 and 𝐻 are used to denote the width and 

height of the raster in pixels.  In this case 𝑊 = 1,024 and 𝐻 =
768.  Figure 11 illustrates the situation of the camera with 

respect to frame “1” and also illustrates the location of the far 

plane with respect to frame “1” when it coincides with frame 

“0”.  Let 𝜓 be the down angle of the camera and 𝒑𝑐 be the 

position of the camera in frame “1”.  Let  𝑑𝑓 be the distance 

of the far plane from the origin of frame “0”.  Furthermore let 

𝜀 be the angle between the 𝑧  axis and the line traced from the 

origin of “2” to the intersection of the ground and far planes.  

Given these definitions, let the rotation matrix between 

frames “1” and “2” be 

 𝐑1
 = [

−1 0 0
0 −    𝜓 co 𝜓
0 −co 𝜓 −   𝜓

], (12) 

 

and the homogeneous transformation be 

 

 𝐇1
 = [

𝐑1
 𝒑𝑐

𝟎𝑇 1
]. (13) 

 

The computation proceeds as follows.  First, project image 

plane points A and B (see Figure 12) onto the ground plane.  

For point A, its position in the camera frame is 𝒗 
𝐴 =

[−𝑤

2
ℎ
2 1]𝑇.  To map A to the ground plane, the following 

equation must hold for unknown 𝛾 

 

 (𝒑𝑐 + 𝛾𝐑1
 𝒗 

𝐴)𝑇𝒏𝑔 = 0, (14) 

 

where 𝒏𝑔 is a vector normal to the ground plane.  The solution 

to this equation yields 𝛾 =
−𝒑𝑐,𝑧

𝒗1,𝑧
𝐴 .  Where the z in the subscript 

indicates that the z component of the vector is used.  This then 

yields 

 

 𝒗0
𝐴 = 𝒑𝑐 + 𝛾𝐑1

 𝒗 
𝐴. (15) 

 

The same procedure is used for B.  Next to find E and F, the 

point E is used here.  First, let 𝒗 
𝐸 = [−𝑤

2
−ℎ
2 1]𝑇, then the 

following equation must hold for unknown 𝜂 

 

 (𝒑𝑐 + 𝜂𝐑1
 𝒗 

𝐸 − 𝒑𝑓)
𝑇
𝒏𝑓 = 0, (16) 

 

where 𝒑𝑓 is the vector to the intersection of the far and ground 

plane and  𝒏𝑓 is a vector normal to the far plane.  The solution 

to this equation yields 𝜂 =
𝒉𝑓−𝒑𝑐,𝑦

𝒗1,𝑦
𝐸 .  Where the y in the 

subscript indicates that the y component of the vector is used.  

This then yields 

 

 𝒗0
𝐸 = 𝒑𝑐 + 𝜂𝐑1

 𝒗 
𝐸. (17) 

 

The same procedure may be applied to the point F. 

 

Step 2: Mapping of points C & D 
Unlike points A, B, E, F which were well-defined in the 

camera frame but unknown in the global frame, points C and 

D are fairly well defined in the global frame “0”, but not well 

defined in the image frame.  First observe that they need to be 

on the edges of the image so their 𝑥  coordinate will be ±𝑤

2
 .  

It can easily be shown that 𝜀 = ta −1 𝑑𝑓−𝒑𝑐,𝑦
𝒑𝑐,𝑧

+ 𝜓 − 𝜋

2
 (see 

 
Figure 10.  Flow chart for the image transformation for the predictive display. 

1. Project points 
(A, B, E, F) onto 
the ground and 
far planes.

2. Project 
points (C, D) 
onto the 
image plane.

3. Look back in the 
history of state 
estimator 2D seconds 
to find frame 0.

4. Compute the 
homogeneous 
transformation to 
frame 1.

5. Project points 
A-F back onto 
the image 
plane.

6. Define perspective 
transforms:
(A,B,C,D)(A’,B’,C’,D’)
(C,D,E,F)(C’,D’,E’,F’)

7. Divide image at C-D 
line and do perspective 
transforms on upper 
and lower halves.

8. Stitch the two 
images back 
together and 
display to the user.

 
Figure 11.  Side view of camera coordinate system and far plane position 

when fames “0” and “1” coincide. 
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Figure 11).  It is straightforward to calculate ℎ𝑓 = ta 𝜀 (see 

Figure 9).  Then, let 𝒗 
𝐶 = [−𝑤

2
ℎ𝑓 1]𝑇 and proceed with the 

same method outlined in equations (14) and (16).  The same 

process applies to point D.  This step may also be 

precomputed as long as the camera and far plane are not 

moving from time step to time step. 

 

Step 3: Determine position evolution over 2D 
This step recalls a prior state from the buffer so that a 

relative position between the current and prior state may be 

computed in the next step.  The states stored in the buffer take 

the following form [𝑥𝑘 𝑦𝑘 𝜃𝑘 𝑡𝑘] which includes the 3 

degree of freedom position and the time at which the state was 

computed.  Assuming that the round trip time is known, which 

is denoted as 𝜏, the algorithm looks back in the buffer 𝑖 steps 

until 𝑡𝑘 − 𝑡𝑘−𝑖 ≥ 𝜏.  When this condition is met, let 𝑗 = 𝑘 −
𝑖.   

 

Step 4: Compute the transformation from frame 0 
to 1 

These two states (at sample k and j) are then encoded as 

homogeneous transformations as  

 

 𝐑𝐴
𝐵
𝑘,𝑗

= [

co 𝜃𝑘,𝑗 −   𝜃𝑘,𝑗 0

   𝜃𝑘,𝑗 co 𝜃𝑘,𝑗 0

0 0 1

], (18) 

 

 𝒑𝑘,𝑗 = [𝑥𝑘,𝑗 𝑦𝑘,𝑗 0]𝑇, (19) 

 

 𝐇𝐴
𝐵
𝑘,𝑗

= [
𝐑𝐴

𝐵
𝑘,𝑗

𝒑𝑘,𝑗

𝟎𝑇 1
], (20) 

 

where the indices 𝑘, 𝑗 indicates that the computation is made 

for 𝑘 and 𝑗 independently.  The instantaneous transformation 

between frames “0” and “1” is then  

 

 𝐇0
1
𝑘

= 𝐇𝐴
𝐵
𝑗

−1
𝐇𝐴

𝐵
𝑘

 (21) 

 

Step 5: Project points A-F back onto image plane. 
For each of the points A-F and their corresponding global 

positions 𝒗0
𝐴,…, 𝒗0

𝐹 computed in steps 1 and 2, they are 

translated back into the camera frame as follows 

 

 [𝒗 
𝐴

1
] = 𝐇1

 −1
𝐇0

1
𝑘

−1
[𝒗0

𝐴

1
]. (22) 

 

This yields the corresponding points A’-F’ in the camera 

frame “2”, which are then converted to planar coordinates as 

follows 

 

 𝒖𝐴 = [
𝒖𝑥

𝐴

𝒖𝑦
𝐴] =

[
 
 
 
 
𝒗 ,𝑥

𝐴

𝒗 ,𝑧
𝐴⁄

𝒗 ,𝑦
𝐴

𝒗 ,𝑧
𝐴⁄

]
 
 
 
 

, (23) 

 

where 𝒗 
𝐴 = [𝒗 ,𝑥

𝐴 𝒗 ,𝑦
𝐴 𝒗 ,𝑧

𝐴 ]
𝑇
.  Note that it is important to 

place the far plane such that 𝑑𝑓 > 𝒑𝑐,𝑦 + 𝑣𝑚𝑎𝑥𝜏𝑚𝑎𝑥, where 

𝑣𝑚𝑎𝑥  is the maximum velocity and 𝜏𝑚𝑎𝑥  is the maximum 

round trip time so that the possibility of 𝒗 ,𝑧
𝐴 = 0 is physically 

impossible.  Finally once the desired points are obtained in 

physical coordinates, the last step is to convert them to raster 

coordinates (i.e. pixels) as follows. 

 

  𝑥
𝐴 = 𝑢𝑥

𝐴 W

 
+

W

 
, (24) 

 

  𝑦
𝐴 = 𝑢𝑦

𝐴 H

 
+

H

 
. (25) 

 

where capitals (W, H) represent the size in pixels and lower 

case (w, h) are physical units.  The same procedure is used for 

points B-F respectively.  This process is illustrated in Figure 

12.   There the image plane is extended to permit the projected 

points to fall outside of the bounds of the image.  Figure 13 

illustrates how the points move on the image plane 

 
Figure 12.  Points A through F are projected back from global frame “0” after 

the vehicle’s movement represented by frame “1”.  The point A maps to A’, 
B to B’, etc.  These points do not have to land in the actual image for the 

transformation to work.  To reduce clutter, only points A’ and B’ are shown. 
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Figure 13.  Mapping of points A-F to A’-F’.  Note that they will not typically 

land back within the boundaries of the original image.  These mappings will 

be used to define two perspective transformations. 
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Step 6: Define perspective transforms 
In this step two perspective transforms are defined, one for 

the ground plane which is uniquely defined by the mapping 

(A, B, C, D) (A’, B’, C’, D’) and one for the far plane (C, 

D, E, F) (C’, D’, E’, F’).  The perspective transform for the 

ground plane has the following form 

 

 [𝑎𝒓
𝐴′

𝑏𝒓𝐵′
𝑐𝒓𝐶′

𝑑𝒓𝐷′

𝑎 𝑏 𝑐 𝑑
] = 𝐌𝐺𝑅𝐷 [ 

𝐴 𝒓𝐵 𝒓𝐶 𝒓𝐷

1 1 1 1
], (26) 

 

and for the far plane, 

 

 [
𝑒𝒓𝐶′

𝑓𝒓𝐷′
 𝒓𝐸′

ℎ𝒓𝐹′

𝑒 𝑓  ℎ
] = 𝐌𝐹𝐴𝑅 [ 

𝐶 𝒓𝐷 𝒓𝐸 𝒓𝐹

1 1 1 1
] (27) 

 

where 𝐌𝐺𝑅𝐷 ∈ ℝ × , 𝐌𝐹𝐴𝑅 ∈ ℝ ×  and 𝑎,… , ℎ are arbitrary 

constants.  The perspective transform is computed using the 

image processing library OpenCV [24].  Specifically the 

function getPerspectiveTransform() is used to 

compute the transform for both the ground and far plane. 

 

Step 7: Split the image and transform each half. 
In this step the image is split along the C-D line, with that 

below associated with the ground plane and that above 

associated with the far plane.  These two sub-images are then 

transformed using the learned perspective transforms 𝐌𝐺𝑅𝐷  

and 𝐌𝐹𝐴𝑅.  (Note that care must be taken to make sure that 

the mapped points correspond to the divided image.)  This is 

done using the OpenCV warpPerspective() function.  

This function maintains the bounds of the original image.  

Clearly two things happen as illustrated in Figure 13.  First 

there are pixels which map outside of the bounds of the 

original image; these points are lost in the destination image.  

Second, there are pixels in the destination image which are 

sourced outside of the bounds of the original image.  In this 

case, OpenCV paints these pixels black. 

 

Step 8: Join the transformed images 
Finally take the two sub-images and rejoin them and present 

them to the user.  This step is illustrated in Figure 14.  

 

SIMULATION SETUP 
The above design was implemented on two workstations 

running Microsoft Windows 7 Professional 64 bit as shown 

in Figure 15.  They were connected via a gigabit Ethernet 

LAN and passed all relevant information via the UDP/IP 

protocol.  Although these computers have the power to run 

everything on one machine, they were run on two for a few 

reasons.  First, because this is a simulation, information is 

very accessible.  By running them on two different machines, 

it is assured that only valid/relevant state is being shared (i.e. 

no access to privileged information). The second is that 

because information is passed over a physical network, it 

provides well-defined “choke points” to monitor and/or 

control network behavior.  This gives ample opportunity to 

control network performance via packet forwarding or the 

insertion of a network emulator.  In the following sections, the 

Vehicle Sim and OCU Sim software design are described. 

 

Vehicle Sim 
The Vehicle Sim computer implemented the majority of its 

software in SimCreator 3.0 which is a tool designed to 

integrate simulation components using block diagrams [25], 

[26], [27] and model multi-body dynamics.  SimCreator 

enables simulations to be distributed both on a computer and 

across a LAN.  In this case it was configured to run three 

processes on the same machine as shown in Figure 16.  

Information is passed between these processes by SimCreator 

using the UDP/IP protocol on the machine. 

The vehicle process did just as it says, it ran a real-time 

vehicle dynamics model.  The model was built in SimCreator 

as shown in Figure 17.  The model includes full suspension 

 
Figure 14.  Steps 7 & 8 shows splitting the image, performing the perspective 

transform and then rejoining the image.  Illustrated here is a perspective 
transform indicated by a forward turn to the right.  Notice that the black areas 

represent pixels for which there is no source information. 

Split

Transform

Join

 
Figure 15.  Setup of the computers on which this long haul teleoperation was 
configured.  All of the state estimation and predictive display software as 

well as the user interface ran on the OCU Sim. The vehicle dynamics, image 

generator and video encoder ran on the Vehicle Sim computer.  The 

computers were connected to a Gigabit Ethernet LAN. 

UDP: Commands,
estimates

UDP: H.264 Video

UDP: Vehicle state

OCU Sim Vehicle Sim
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kinematics, power train and tire model.  It also communicates 

with a terrain model for roughness, grade and side slope 

information.  It is updated at 1,000 Hz and its states are 

integrated using Runge-Kutta 4th order integrator.  It receives 

driver commands from the Comms process and provides 

vehicle state information (to include position, velocity and 

acceleration as well as orientation and rotational rates) to the 

Comms and Graphics processes. 

The Comms process manages UDP communications to the 

OCU Sim computer.  It receives UDP packets from the OCU 

Sim according to the structure shown in Listing 1.  In that 

structure is a monotonically increasing packet number and a 

time stamp.  The time stamp is sent back by the vehicle so the 

OCU can estimate round trip time.  Vehicle commands 

include throttle, brake, steer and gear.  Finally, the estimated 

states of speed and yaw rate are sent to the vehicle for 

computation of the error.  The OCU Sim generated these 

packets at 100 Hz.  This received OcuToVehicle packet is 

a good place to insert a network performance model and the 

Comms process does just that by enqueuing these packets in 

a FIFO buffer along with their associated time stamps.  They 

are released from the FIFO queue when they have been 

waiting for at least 𝜏 seconds.  

When released from the FIFO queue, the Comms process 

responds by immediately sending out a packet with the 

structure shown in Listing 2.  This contains the received 

packet number and time stamp as well as the local time stamp.  

This is used to synchronize time between the two machines.  

The video frame number and video frame time are sent for 

tracking purposes.  It contains the orientation (only pitch is 

used), the angular rates (only yaw rate is used) and speed.  

Finally, it contains the errors which were computed based on 

the sent speed and yaw rate estimates.  It was previously 

established that computing error on the vehicle side is a 

simple and effective way to assure that it is not affected by 

time skewing of the signals. 

The Graphics process renders the view that the camera sees.  

It takes in a terrain database model in Open Flight or VRML 

format and then renders the view based on position and 

orientation, which it receives from the Vehicle process.  It 

 
Figure 16.  Blocks representing three processes for the Vehicle Sim.  Comms 

performed UDP communication and network delay modeling, Vehicle 

contained the multibody vehicle dynamics of the HMMWV used for the 
UGV, and Graphics ran the graphical rendering engine and communicated 

with another process via shared memory which ran the video encoding. 

 
Figure 17.  HMMWV vehicle model built in SimCreator. 

struct OcuToVehicle 

{ 

  // General information 

  int packetNo; // Incremental count 

  unsigned int ocuTime; // Time stamp 

 

  // Vehicle commands 

  float throttle; // [0,100] 

  float brake; // [0,100] 

  float steer; // [-100,100] 

  int gear; // Enumerated {1,2,3,4} 

 

  // Estimated states 

  float vHat ; // Estimated speed in m/s. 

  float yawRateHat; // Estimated yaw rate in rad/s. 

}; 

Listing 1.  Information sent from OCU to Vehicle. 

struct VehicleToOcu 

{ 

  // Synchronization information 

  int retPacketNo; // Returned packet number. 

  unsigned int retOcuTime; // Returned time. 

  unsigned int vehTime; // Vehicle local time. 

 

  // Video information 

  int lastFrame; // Number of last frame. 

  int frameTime; // Time of last frame. 

 

  // IMU Data 

  float orientation[3]; // R, P, Y, rad 

  float omega[3]; // Rotational rates, rad/sec 

  float speed; // Speed in m/s, body fixed 

 

  // Computed errors 

  float eSpeed; // Speed error 

  float eYawRate; // Yaw rate error 

}; 

Listing 2.  Information sent from Vehicle to OCU. 
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renders a scene at a rate of 30 Hz at XGA resolution.  These 

frames are rendered both on the screen and to a bit map for 

video encoding by a separate process.   

For reasons beyond the scope of this paper, the video 

encoder was written outside of SimCreator.  It is coded in 

C++ as a stand-alone process which communicates with the 

Graphics process via shared memory (using the Boost C++ 

Library [28]).  It uses the FFmpeg [29] video 

encoding/decoding library to encode the video frames being 

passed over the shared memory.  The H.264 encoder is used 

with the parameters shown in Table 1.  For every frame output 

by the encoder, the information is manually chopped into 

1,300-byte chunks and then sent via a UDP socket to the OCU 

computer.  (Note that the FFmpeg avio_write() was not 

used because it only sends full UDP packets.) 

 

OCU Sim 
The OCU Sim computer runs in a single process written in 

C++.  It employs the FFmpeg library for video decoding and 

the OpenCV library for the image processing.  Additional 

components are the state estimator and the UDP 

communications.  The code runs in two threads.  The first 

thread runs the FFmpeg decoding and the OpenCV image 

processing.  This first thread is event driven.  It continually 

decodes the video stream as packets are received and then 

when it has a new frame, it runs the predictive display code 

and then displays that to the user.  The second thread is a 

periodic loop which runs at 100 Hz.  It updates the state 

estimator and then sends a UDP packet containing the 

information in Listing 1 to the vehicle.  In its idle time, it also 

continually polls for return packets from the vehicle.  When it 

receives a packet it updates its internal information to be used 

by the state estimator and the predictive display. 

 

Timing 
Figure 18 illustrates the data flow and timing of the 

predictive display system in a causal way.  The timing and 

data flow are one instance of a process that occurs over and 

over again.  The flow of information starts with a command 

being issued by the operator 1  (which occurs at 100 Hz) 

which then flows to the vehicle and to the state estimator 2 .  

The arrival of the driver command immediately triggers a 

response in which the vehicle sends its state information and 

error back to the estimator 3 .  The driver command 

information 2  also affects the velocity and position of the 

vehicle and subsequently the camera 4 , which runs 

independently and captures frames at 30 Hz.  Between events 

4  and 5  the frame is encoded (Note that with GOP size of 

25, most frames are P frames which require some amount of 

processing), chopped into UDP packets, sent to the OCU, and 

then reassembled and decoded into a video frame.  At event 

5  (which is triggered by a new video frame) the OCU uses 

the state estimator to perform the predictive display image 

manipulation and then renders the frame to the operator, thus 

completing the cycle at event 6 . 

 

EXPERIMENTAL RESULTS 
The system which was described in the preceding section, 

was run experimentally by the author and these results are 

discussed in this section.  The experiments were run on a flat 

terrain database which consists of four different types of tiles 

which are 200 m x 200 m each.  These tiles consist of a 

straight section, a 75 m radius right turn, a 75 m radius left 

turn and an ‘S’ turn (which has six curves of 20 m radius 

each).  A wire frame diagram of the terrain is shown in Figure 

19.  The course was negotiated in a clock-wise diection, 

starting on the far right (east) portion facing down (south) as 

shown in Figure 19.  The operator’s goal is to to stay in the 

right lane which has a width of 4 m.  Speed on the course is 

regulated by means of speed limit signs which are as follows.  

Preceeding each right or left turn with 75 m radius, there is a 

30 mph (48 kph) speed limit sign, preceeding each ‘S’ turn 

there is a 15 mph (24 kph) speed limit sign and preceeding 

each straight section of length of two tiles there is a 40 mph 

(65 kph) speed limit sign.  The course is approximately 5.8 

km (3.6 miles) long and takes approximately 10 minutes to 

Table 1.  FFmpeg H.264 Encoder Parameters. 

GOP Size 25 

Bit rate 4,000,000 

Resolution 1024x768 

Time Base (N/D) 1/30 

Max B Frames 0 

Option: “tune” “zerolatency” 
 

 
Figure 18.  Timing diagram sowing the major components and a causal chain 

of events which start with a driver command and end with a display rendered 
to the operator.  Also show are the flow of information between the major 

components.  The top two blocks (Estimator & OCU) run on the OCU Sim 

and the bottom two blocks (Vehicle & Camera) run on the Vehicle Sim.  

Lines trace data flows.  Time proceeds from left to right. 
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complete one circuit around the course.  The advantage of a 

tile-based terrain is that a participant is subject to the same 

circumstance at multiple times through the course which 

multiplies the statistical sample size if one wishes to examine 

particular events.  In particular this terrain contains 14 straight 

sections, 9 right turns, 5 left turns, and 2 ‘S’ turns. 

The experiments consisted of three configurations as shown 

in Table 2.  Configuration 1 with no additional latency and no 

predictive display is intended to represent the best possible 

scenario and should produce the best case.  Configuration 2 

on the other hand is intended to represent the baseline case 

where latency is present but it is not actively mitigated.  This 

may be thoughof as the worst case baseline performance from 

which to improve.  Configuration 3 maintains the same 

latency as configuration 2 however, the predictive display is 

added.  For each configuration, five experimental runs were 

made.  They were run in order of configuration with five of 

configuration 1, then five of configuration 2, etc.  

(Configuration 2 had one additional aborted run because the 

vehicle “crashed” partway through the run.)   

Data collected during the experiments consisted of four data 

logs associated with the OcuSim and the three processes run 

on the VehicleSim.  On the OCU the data were logged at 100 

Hz and on the VehicleSim the data were logged at 1,000 Hz.  

Most of the results hereafter presented speak to the 

effectiveness of the predictive display vs. the unmitigated 

case.  The traces of the x-y position of these runs are 

illustrated in Figure 20.  Since the section of the terrain where 

the simulation starts and ends has inconsistencies such as start 

time, stop location, etc., the data analysis omits the fist portion 

of the run (i.e. analysis starts with the second tile), likewise, 

the same tile is omitted from the end of the analysis, so when 

the vehicle enters this tile data analysis stops.  The key metrics 

of interest in teleoperation are speed and accuracy where both 

should be maximized.  (These are normally mutually opposed 

objectives.)  In this analysis, accuracy is tracked using two 

metrics, namely path deviation and heading deviation (these 

are error metrics, so lower is better).  The target path is not 

marked on the road but is regarded as the center of the 4 m 

wide right lane.  The road way is defined by points along the 

center of the road, and the desired path is 2m to the right of 

 
Figure 19.  A wire-frame top-down view of the terrain database used for the 
experimental runs.  The database consists of a 6 by 8 grid of 200m square 

tiles consisting of straight, left, right and ‘S’-turn tiles.  The starting location 

is denoted with the green circle and the direction of travel with the arrow. 

Table 2.  Experimental Configurations. 

Configuration Added Latency Predictive Display 

1 0 ms No 

2 500 ms No 

3 500 ms Yes 
 

 
Figure 20.  The path driven for all 15 experimental runs.  Note the omission 

of analyzed data from the first tile (outlined as a dashed square). 

 
Figure 21.  Speed traces for the 15 record runs vs. distance driven.  Top is no 

delay, no Predictive Display (PD), middle is 500 ms of added delay, no PD, 

bottom is 500 ms of added delay with PD. 
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the center of the road.  Path heading error is measured as the 

angle difference between the path tangent and the vehicle 

heading direction.  Speed is measured as the average speed 

along the course.  The raw data recorded for each of the three 

configurations is shown in Figure 21 for the veicle speed, 

Figure 22 for the path deviation, and Figure 23 for the path 

heading error.  With respect to speed, it is clearly seen that the 

speed degrades severely between the first and second 

configuration, with the unmitigated delay case demonstrating 

severe inconsistency in run-to-run speeds over the course.  

The author believes that this is because so much attention has 

to be paid to steering the vehicle, that the operator pays less 

attention to speed.  The bottom plot in Fiure 21 demonstrates 

that speed consistency is imporoved since the predictive 

display makes steering the vehicle less intense.   

Figures 22 and 23 adress accuracy.  Figure 22 shows path 

deviation which is the vehicle’s distance from the center of 

the lane.  This metric obviously directly relates to accuracy 

and gives an intuative sense as to how well the operator is 

keeping to his lane.  Given that the vehicle is narrower than 

the lane, it is possible that the operator has a non-zero 

deviation but is still in the lane.  Figure 23 shows the 

directional error as this indicates how well the operator is 

maintaining vehicle direction along the path.  It is also an 

indicator of the ability (or inability) of the operator to attain 

and maintain a desired directional heading.  

To get a qualitative sense as to how these metrics compare, 

the mean speeds are charted in Figure 24.  There it is clear 

that the predictive display helps the operator achieve nearly 

the same average speed as the best case. In the case of 

configuration 2 a gradual rise in attained average speed is 

observed as the runs progress from run 1 to run 5.  This is an 

indicator that an operator can adapt or train to a condition of 

high latency and as such improve performance.  For a 

quantitative sense of the error, both the path deviation and the 

heading error are integrated over the path length (this metric 

is used in other TARDEC teleoperation work) as follows: 

 

 ∫ |𝑒𝑝(𝑠)|𝑑𝑠
𝐿

0
 (28) 

 

where 𝐿 is the length of the course under analysis 

(approximately 5,600 m) and 𝑒𝑝(𝑠) is the path deviation as a 

function of path length 𝑠.  Likewise the metric for heading 

error is computed as 

 
Figure 22.  Path deviation traces for the 15 record runs vs. distance driven.  
Top is no delay, no Predictive Display (PD), middle is 500 ms of added delay, 

no PD, bottom is 500 ms of added delay with PD. 

 
Figure 23.  Path heading error traces for the 15 record runs vs. distance 

driven.  Top is no delay, no Predictive Display (PD), middle is 500 ms of 

added delay, no PD, bottom is 500 ms of added delay with PD. 

 
Figure 24.  Mean speeds for the 15 runs.  First five represent configuration 1, 
second five represent configuration 2, and the third represents configuration 

3. 

Distance [m] 
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 ∫ |𝑒 (𝑠)|𝑑𝑠
𝐿

0
 (29) 

 

where 𝑒 (𝑠) is the heading error.  The value of these two 

metrics are plotted in Figures 25 and 26.  For the configuration 

2 it is observed that the trend is for the operator to drive more 

accurately from run to run.  This is likely due to a training 

effect.  These results are also shown in Table 3 where the 

relative improvement obtained by the predictive display over 

the case without the predictive display is demonstrated.  The 

addition of the latency reduces the average speed from 46.5 

kph to 32.5 kph (a 30% reduction) and the predictive display 

helps recover the speed lost due to latency indicating a 9% 

penalty in achieved speed.  Regarding accuracy, it is observed 

in Table 3 that both metrics severely degrade with the addition 

of latency (148% for path deviation and 180% for heading 

deviation).  For the predictive display the accuracy degrades, 

but not as severely.  To gauge the benefit of the predictive 

display, its performance to the case without (configuration 2) 

is now compared.  As shown in Table 3, the predictive display 

increases the overall speed by 29% and reduces the path 

deviation and heading error by 35% and 42% respectively.  

Finally, error is compared to the difference between the best 

and worst case as is done Zheng, et al. [15].  Using this 

normalized metric, the predictive display yields a 69% 

improvement in speed, a 59% improvement in path deviation 

and a 65% improvement in heading error. 

This discussion concludes with some screen captures of an 

experimental run.  Figures 27-30 show four screen captures 

on the course from configuration 3 (500 ms of delay with 

predictive display operational).  Figure 27 shows operation on 

a straight section of the course.  In this case the operator is 

driving on the ground plane and is moving toward the far 

plane.  Although not entirely clear, the far plane occupies 

approximately 60% of the image and the ground plane 

occupies approximately 40% of the image.  While in a mild 

turn, as illustrated in Figure 28, the predictive display still fills 

the whole image because the operator is driving into the scene 

which provides some margin of the far and ground plane to 

be displayed during mild turns (as illustrated in Figure 7).  

This is not the case for sharp turns such as the ‘S’ turn portion 

            
Figure 25. Integrated path deviation for the 15 runs.  First five represent 
configuration 1, second five represent configuration 2, and the third 

represents configuration 3. 

 

 Figure 26. Integrated heading error for the 15 runs.  First five represent 
configuration 1, second five represent configuration 2, and the third 

represents configuration 3. 

 

 

Table 3.  Results from experimental runs.  The third and fourth column show performance and the percent difference in performance as compared to the best case 

(i.e. configuration 1). The fifth column represents the improvement realized by the predictive display for the 500 ms delay case (i.e. configuration 3 compared to 
configuration 2).  The sixth and last column represents the normalized improvement as is done by Zheng, et al. in [24]. 

 Config. 1 

Config. 2 

(% difference 

to config. 1) 

Config. 3 

(% difference 

to config. 1) 

Improvement 

of PD 

Normalized 

Improvement 

of PD 

Delay [ms] 0 500 500   

Predictive Display N N Y   

Average Speed [kph] 46.5 32.5 (-30%) 42.2 (-9%) 29% 69% 

Average Integrated Deviation [m2] 1940 4816 (+148%) 3110 (+60%) 35% 59% 

Average Integrated Heading Error [deg-m] 126 353 (+180%) 204 (+62%) 42% 65% 
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of the terrain as illustrated in Figures 29 and 30.  In these cases 

the manipulated image does not have content to represent the 

portion of the scene that it turned into.  This will be mitigated 

in future by capturing a wider field of view than is presented 

to the operator. 

 

CONCLUSIONS 
In this paper a scheme for the mitigation of latency in the 

teleoperation of a UGV was presented.  A state estimator was 

developed which has both feedforward and feedback 

functions to estimate the position of the vehicle over the round 

trip network delay.  This information was used to manipulate 

the video frames being sent from the vehicle to the OCU to 

render a best estimate of what the operator would see in the 

no delay case.  The implementation of this scheme in a 

simulation environment was then described.  Preliminary 

experimental results were presented in which the predictive 

display was shown to be an effective method for the 

mitigation of latency by increasing achieved speed and by 

reducing the path deviation and the heading error 

significantly.  By implementing predictive displays as a 

mitigation of latency in teleoperation, a minimally invasive 

approach to teleoperation was developed which has the 

potential for broad application to several UGV types and 

missions. 
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