
UNCLASSIFIED: Distribution Statement A. Approved for public release; distribution is unlimited. (#28106)

UNCLASSIFIED: Distribution Statement A. Approved for public release; distribution is unlimited. (#28106)

2016 NDIA GROUND VEHICLE SYSTEMS ENGINEERING AND TECHNOLOGY SYMPOSIUM
MODELING & SIMULATION, TESTING AND VALIDATION (MSTV) TECHNICAL SESSION

AUGUST 2-4, 2016 – NOVI, MICHIGAN

PREDICTIVE DISPLAYS FOR HIGH LATENCY TELEOPERATION

Mark J. Brudnak, Ph.D.
Physical Simulation & Test

U.S. Army Tank Automotive Research Development and Engineering Center (TARDEC)
Warren, MI

ABSTRACT

This paper presents a method to mitigate high latency in the teleoperation of unmanned ground systems through display prediction

and state estimation. Specifically, it presents a simulation environment which models both sides of the teleoperation system in the

laboratory. The simulation includes a teleoperated vehicle model to represent the dynamics in high fidelity. The sensors and

actuators are modeled as well as the communication channel. The latency mitigation approach is implemented in this simulation

environment, which consists of a feed-forward vehicle model as a state estimator which drives a predictive display algorithm. These

components work together to help the operator receive immediate feedback regarding his/her control actions. The paper contains

a technical discussion of the design as well as specific implementation. It concludes with the presentation of some experimental

data which demonstrate significant improvement over the unmitigated case.

INTRODUCTION
One of TARDEC’s top objectives is to lead the Army and

DoD Ground Vehicle Community in the research,

development, engineering, demonstration and fielding of

Unmanned Ground Vehicle (UGV) systems. Teleoperation is

a near-term technology which has the potential to be a quick-

win for UGVs. It is and has already been employed in the

cases of small UGVs (S-UGV) performing Counter

Improvised Explosive Device (C-IED) and Explosive

Ordinance Disposal (EOD) missions. In these cases the

speeds are low and the operator is usually in close proximity

to the S-UGV yielding low latency and responsive control.

Long-distance teleoperation on the other hand, introduces

significant latency which degrades the operator’s ability to

drive/control the vehicle. As such, the mitigation of this

latency is the most fundamental challenge to achieving

teleoperation under high latency. Consider the “basic”

teleoperation configuration in Figure 1. Under low-latency

the human operator functions as they would in an actual

vehicle, however, under latencies of more than 200-300 ms,

the operator is forced to change his/her strategy to a “move

and wait” approach, which significantly degrades

performance and lowers the achievable top speed.

This paper presents a method to mitigate high latency

through display prediction and state estimation. This

approach leverages and extends techniques developed for

long-haul integration of hardware in the loop (HITL) systems

over the Internet [1]. Specifically, it presents a simulation

environment which models both sides of the teleoperation

system in the laboratory. The simulation includes

teleoperated vehicle model to represent the dynamics in high

fidelity. The sensors and actuators are modeled as well as the

communication channel. The latency mitigation approach is

implemented in this simulation environment, which consists

of a feed-forward vehicle model as a state estimator which

drives a predictive display algorithm. The state estimator

consists of a reduced order model which seeks to achieve an

immediate estimate of how the vehicle will respond to the

commanded inputs. It furthermore contains a correction term

which tracks the relevant vehicle states over the long-term.

The predictive display uses perspective transformation

techniques to predict what a camera would see from a

different location given an existing frame. These components

work together to help the operator receive immediate

feedback regarding his/her control actions

This paper presents the overall architecture of the mitigation

approach as well as development of the mathematical

algorithms used for the state estimator and predictive display.

It continues with a description of the simulation

implementation of the approach and finishes with

Figure 1. Basic teleoperation configuration with unmitigated delay, D.

Proceedings of the 2016 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)
UNCLASSIFIED: Distribution Statement A. Approved for public release; distribution is unlimited. (#28106)

Predictive Displays for High Latency Teleoperation
UNCLASSIFIED: Distribution Statement A. Approved for public release; distribution is unlimited. (#28106)

Page 2 of 16

experimental comparisons of the state estimator and

predictive display performance as compared to both the ideal

and the unmitigated cases.

BACKGROUND
The negative impact of delay on the performance of

teleoperated UGVs is well established in the literature [2], [3].

Delays in closed-loop control systems are one of the well-

known sources of degraded performance and/or stability.

Although, in the case of teleoperation, the human-in-the-loop

is a stabilizing factor and provides robust compensation

against instability, the human’s ability to respond to the visual

inputs begins to degrade at delays above 50ms and

performance is so degraded at 200-300 ms that the operator

must change his/her control approach from continuous steer

to the slower and more error prone “move and wait.” The

“move and wait” approach requires the operator reduce speed

to mitigate against the delay.

Various approaches have been used to mitigate high latency.

TARDEC first encountered this problem as they were

developing their duty cycle experiments [4], [5], [6]. In this

approach, they used a high-fidelity model to serve as a state

predictor to estimate the system’s response in the future.

Subsequently, TARDEC, along with the University of

Michigan, began to develop additional methods of

quantification of performance [7], [8], [9] and independence

from and explicit model [10], [11], [12], [13], [14], [15].

These methods have transitioned to the problem of

teleoperation in the presence of substantial time delays [16].

Related to the problem of predicting system behavior in the

presence of delays, is the challenge of incorporating the

prediction into the control algorithm. Some methods strive to

place the predictors in-line either predicting a future state of

the system or of the operator [16]. Since the standard

teleoperation scenario incorporates a video feed being sent

back to the operator, this is still delayed by the amount of

transport delay between the vehicle and the operator.

Furthermore, the video’s data, being a series of raster images,

is not subject to explicit prediction because its values are not

the result of a natural evolution of system states. In this case,

researchers have undertaken methods to present information

in the video stream to help the operator understand the true

state of the system. In these cases, many have undertaken to

overlay the display with graphics to include vehicle

surrogates and lane markers [17], [18]. Others have

undertaken to physically manipulate the video frames to

estimate what the driver would see if the stream were not

delayed. Lovi, et al. have developed methods for fixed base

manipulators in a manufacturing environment [19].

Rachmielowski, et al. have developed similar methods [20].

Royer, et al. used vision systems to localize a mobile robot

[21]. Cobzas, et al. have used predictive displays to estimate

and reconstruct geometry [2]. Kelly, et al. developed a

predictive display approach using vision and LIDAR to fully

construct a 3D scene including geometry and vision [22].

This work seeks to develop a state estimator and predictive

display system which (1) requires minimal intervention on the

vehicle and (2) which is as simple as possible. Furthermore,

it seeks to present feedback to the operator in the most natural

way. The predictive display approach is predicated on the

assumption that a vehicle camera scene at time 𝑡 is very

similar to a prior scene (i.e. at time 𝑡 − 2𝐷). This approach

seeks to predict a current view from a past view using a

predictive model in order to adjust the vantage point. This

paper first discusses the mathematics behind the approach. It

then discusses the simulation environment setup to evaluate

it. It presents some experimental data and finishes with

conclusions.

APPROACH
The top-level approach to developing this system is

illustrated in Figure 2. Building upon the fundamental

elements shown in Figure 1, the added components are the

State Estimator (SE) and the Predictive Display (PD).

The SE functions in two modes simultaneously:

feedforward and feedback. In feedforward mode the SE

accepts the driver commands in the form of throttle, brake and

steer (T, B, S) and (using the current state) predicts an

immediate response. Since the SE runs at 100Hz, it has a very

responsive reaction to the driver commands, on the order of

10 ms. This feedforward mode is based on a very simplified

form of the vehicle dynamics as it is understood that high-

fidelity is not needed because (1) terrain information is not

known and (2) its prediction horizon is on the order of the

round trip delay, 2D. If it were only operating in feedforward

mode the states would drift from the actual values, so there is

a correction term which keeps the states roughly in-line with

the states of the vehicle. Finally, the SE maintains a record of

states so that it can look back to a past state to obtain the

relative motion between the two.

Figure 2. Block diagram of predictive display and state estimation approach.

C
o

m
m

s.
C

h
an

n
el

Vehicle

OCU

D

Throttle,
Steer,
Brake

Manipulated Video

State Estimation

D

Predictive Display

D

State Estimate

State

 , ()

()

v v v v v v

k

v v v

 



x f x τ p e

y h x

Raw Video

Proceedings of the 2016 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)
UNCLASSIFIED: Distribution Statement A. Approved for public release; distribution is unlimited. (#28106)

Predictive Displays for High Latency Teleoperation
UNCLASSIFIED: Distribution Statement A. Approved for public release; distribution is unlimited. (#28106)

Page 3 of 16

The PD consumes the predicted state information from the

SE as well as the raw video stream from the vehicle. The PD

operates under the assumption that the scene observed at time

t will be very similar to that observed at t-2D. It therefore

asks the SE to give the difference in position from time t-2D

to time t. It then uses this information to manipulate the latest

video frame (which is 2D seconds old) to give a best estimate

of what the operator would see as if there were no delay. This

then is passed to the OCU for display to the operator.

STATE ESTIMATOR
In this section the state estimator (SE) is derived. The

coordinates for the state estimator are illustrated in Figure 3.

The State Estimator is a planar model with three degrees of

freedom defined by 𝒑𝑘 = [𝑥𝑘 𝑦𝑘]𝑇 and 𝜃𝑘, where time is

discretized with the index k. In this system, the state is

represented as 𝒙𝑘 = [𝒑𝑘
𝑇 𝜃𝑘]

𝑇. These are stored in the global

coordinate system denoted by the subscript A. The local

coordinate system, denoted by B, is used to update the rate

states which are then translated into the global frame for

integration. The rates are denoted as 𝑦̇𝐵 and 𝜃̇. The state

estimator feedforward dynamics consist of a longitudinal

model and a lateral/yaw model. The inputs to the vehicle

coming from the OCU are denoted as throttle, tk, brake, bk,

and steer, sk, and are passed as unitless values normalized to

a maximum of 100. The equations of motion are modeled as

continuous differential equations and then discretized using

the Euler approximation. The acceleration equations are as

follows:

 𝑦̈𝐵 =
1

𝑀
(𝑓𝑝(𝑡𝑘, 𝑦̇𝐵) + 𝑓𝑟(𝑏𝑘 , 𝑦̇𝐵) + 𝑓𝑔(𝜒)) (1)

and

 𝜃̈𝐵 =
1

𝐼
𝑓𝑠(𝑠𝑘 , 𝑦̇𝐵). (2)

These accelerations are integrated to obtain velocity states 𝑦̇𝐵

and 𝜃̇𝐵, which are then translated into the global frame using

the rotation matrix 𝐑𝐴
𝐵 yielding

 𝒑̇𝐴 = 𝐑𝐴
𝐵 [

0
𝑦̇𝐵

]. (3)

These are integrated to yield the new global position 𝒙𝑨 and

𝜃𝑨 which are then stored (along with the corresponding time

𝑡𝑘) in a circular buffer for later use. The corresponding

homogeneous matrix 𝐇𝐴
𝐵 = [

𝐑𝐴
𝐵 𝒑𝑘

𝟎𝑇 1
] represents the

combination of the rotation and translation of the local

coordinate system, B.

Longitudinal Dynamics
The longitudinal dynamics, governed by 𝑓𝑝(𝑡𝑘, 𝑦̇𝐵),

𝑓𝑟(𝑏𝑘 , 𝑦̇𝐵), and 𝑓𝑔(𝜒), determine the instantaneous speed of

the vehicle. Most problems with teleoperation over a high-

latency communications channel have to do with over-

correction of steer direction and not speed, mostly because the

vehicle is less sensitive to throttle and brake than it is to steer.

That being said, because turning rate is dependent on speed,

it is important that the speed be accurate to assure good yaw

rate estimates. The equations for the longitudinal model use

the illustration in Figure 4. There are three components of the

force which act longitudinally. First 𝑓𝑝 accounts for the

propulsion force which is dependent on the throttle input and

the velocity of the vehicle. With the goal of being as simple

as possible, the following equation is used for the propulsion

forces

 𝑓𝑝 = 𝑀𝐴𝑚𝑎𝑥
|𝑉𝑚𝑎𝑥−𝑦̇𝐵|

𝑉𝑚𝑎𝑥

𝑡𝑘

100
, (4)

where 𝑀 is the vehicle mass, 𝐴𝑚𝑎𝑥 is the maximum

acceleration available to the vehicle, and 𝑉𝑚𝑎𝑥 is the

maximum velocity of the vehicle and 𝑡𝑘 ∈ [0,100]. Note that

this is intentionally designed to be governed by a few high-

level parameters. Likewise the forces which oppose motion

are lumped into 𝑓𝑟 and these include the braking and drag.

These are again modeled as simply as possible

Figure 3. Coordinate system of the State Estimator.

xA

yA
xB

yB

𝒙𝑘

𝒙𝑘−1

𝒙𝑘−

𝒙𝑘−

𝒙𝑘−

𝒙𝑘−

𝒑𝑘

𝜃𝑘

Figure 4. Forces governing the longitudinal degree of freedom.

𝜒

𝑓𝑝

𝑓𝑟

 𝜒

Proceedings of the 2016 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)
UNCLASSIFIED: Distribution Statement A. Approved for public release; distribution is unlimited. (#28106)

Predictive Displays for High Latency Teleoperation
UNCLASSIFIED: Distribution Statement A. Approved for public release; distribution is unlimited. (#28106)

Page 4 of 16

 𝑓𝑏 = {
−𝑀𝐵𝑚𝑎𝑥 g 𝑦̇𝐵

𝑏𝑘

100
, |𝑣| > 0.1

0, otherw e
, (5)

where 𝑀 is the vehicle mass, 𝐵𝑚𝑎𝑥 is the maximum braking

acceleration, 𝑏𝑘 ∈ [0,100] is the brake command, and

 g 𝑣 = 𝑣
|𝑣|
, 𝑣 ≠ 0 returns the sign of its argument. The drag

forces are

 𝑓𝑑 = −
𝐴𝑓𝐶𝑑

𝜌|𝑦̇𝐵|𝑦̇𝐵, (6)

where 𝐴𝑓 is the cross sectional area, 𝐶𝑑 is the drag coefficient,

and 𝜌 is the density of air.

Finally gravity component due to grade is

 𝑓𝑔 = −𝑀𝐺 𝜒, (7)

where 𝐺 is the acceleration due to gravity (i.e. 9.8 m/s2), 𝜒 is

the pitch angle of the vehicle.

Lateral/Yaw Dynamics
Lateral/yaw dynamics are illustrated in Figure 5. As

discussed, it is more important for this to be accurate since a

vehicle is typically much more responsive to steering inputs

than to longitudinal inputs. Based on the kinematics shown

in the figure, it is reasonable to use 𝜃̇ = 𝑦̇𝐵
𝐵

ta 𝜑, however,

the form shown in equation (2) is desirable because the

correction term can then work through an integrator rather

than directly on the state. In that case

 𝑓𝑠 =
𝐼

Δ𝑡
(𝑦̇𝐵

𝐵
ta (𝛽

𝑠𝑘

100
) − 𝜃̇) (8)

where 𝐼 is the yaw moment of inertia (note that the equations

are structured such that 𝐼 does not matter), 𝐵 is the wheel base,

𝛽 is the steering scale factor which accounts for gain and

conversion to radians, 𝑠𝑘 ∈ [−100, 100] is the steer

command, 𝜃̇ is the current yaw rate, and Δ𝑡 is the time step of

the dynamics model. (Note that the relationship to Figure 5

is that 𝜑 = 𝛽
𝑠𝑘

100
.)

State Correction
Regardless of the accuracy of the feedforward model, states

tend to drift. It is therefore necessary to add a feedback term.

As such, the two terms that are subject to correction are the

speed, 𝑦̇𝐵, and the yaw rate, 𝜃̇. First note that the design

employs remote error computation. In this method, the

estimated state is sent to the vehicle along with the vehicle

commands. The estimated state is then compared to the actual

state on the vehicle and the error is sent back to the OCU. In

this way, the error computation is uninfluenced by time skew.

This approach is illustrated in Figure 6(b) as compared to the

skewed computation (Figure 6(a)). The error is then used to

close the gap between the estimated and measured states,

understanding that it is 2D seconds old. The rate of correction

must account for the arrival of new error information every

10 ms (i.e. the state estimator runs at 100 Hz). The correction

gain is therefore set so that the error will be closed in about

100ms. Equations (1) and (2) then become

 𝑦̈𝐵 =
1

𝑀
(𝑓𝑝(𝑡𝑘, 𝑦̇𝐵) + 𝑓𝑟(𝑏𝑘 , 𝑦̇𝐵) + 𝑓𝑔(𝜒)) − 𝑣𝑒𝑦̇𝐵

 (9)

and

 𝜃̈𝐵 =
1

𝐼
𝑓𝑠(𝑠𝑘 , 𝑦̇𝐵) − 𝑦𝑒𝜃̇𝐵

 (10)

where 𝑣 and 𝑦 are the gains for the correction terms. In this

work they are both set to 10.

Figure 5. Illustration of the lateral/yaw estimator.

𝜃̇

𝜑

𝜑

𝑦1̇ = 𝑣

𝐵

CL

Figure 6. Two approaches to error computation. Example shown in the case
of longitudinal performance where T(t) represents the throttle command and

v(t) represents the velocity. The top diagram (a) represents error computation

on the OCU/estimator side where the computation is skewed by 2D seconds
and the bottom diagram (b) represents error computation on the vehicle side

which is not skewed.

Model D

Vehicle

D

 𝑡

𝑣 𝑡 − 𝐷

T 𝑡 − 𝐷

𝑣 𝑡

𝑣 𝑡 − 2𝐷

+
−

𝑒𝑣

Model D

Vehicle

D

 𝑡 , 𝑣 𝑡

𝑣 𝑡 − 𝐷

+
−𝑒𝑣

 𝑡 − 𝐷

𝑣 𝑡 − 𝐷
(b)

(a)

Proceedings of the 2016 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)
UNCLASSIFIED: Distribution Statement A. Approved for public release; distribution is unlimited. (#28106)

Predictive Displays for High Latency Teleoperation
UNCLASSIFIED: Distribution Statement A. Approved for public release; distribution is unlimited. (#28106)

Page 5 of 16

PREDICTIVE DISPLAY
The basic idea of the predictive display is illustrated in

Figure 7. The top of the figure illustrates two positions of the

camera mounted on the vehicle. The first position shows the

video frame represented with no delay. The second position

shows the camera corresponding to forward motion. The

basic idea of the predictive display is that the frame is (in

concept) projected onto the ground plane and the far plane.

The position is then moved forward by 2D according to the

speed. The image is then projected back onto a virtual image

plane to account for the forward motion. This gives a

reasonable estimate as to what the operator will see at a time

that is advanced 2D into the future. How this works with an

actual image is shown on the bottom of Figure 7. From left

to right is shown the original image, the projection of the

moved camera back onto the image plane, and the subsequent

transformed image. Figure 7 only illustrates longitudinal

motion. To fully account for planar motion, the approach

incorporates lateral and yaw motion as well.

The predictive display is configured with three coordinate

systems as shown in Figure 8. The global frame denoted by

“0” represents the notional location of the vehicle when the

video frame was grabbed. It represents the no-delay case. It

is also the frame in which the ground plane and far plane

remain fixed. (Note: It does not correspond to the frame A in

the vehicle state estimator as shown in Figure 3.) The vehicle

frame denoted by “1” represents the location of the vehicle

after its position has evolved over the round-trip delay of 2D.

The camera frame denoted by “2” represents the location of

the camera in the vehicle frame and it is fixed with respect to

the vehicle (although in general it does not need to be). The

frame “2’” represents frame “2” with respect to the global

frame “0”. Also shown in Figure 8 is the image plane and the

trace of the four corners of the image plane onto the ground

and far planes represented by black lines and red traces on the

ground and far planes.

The camera coordinates are illustrated in Figure 9. There

the image plane is located in physical units in the camera

coordinate system. The image plane is translated to pixel

units as a raster. (XGA resolution of 1024x768 is used in the

sequel.) Conversion between raster and image plane

coordinates can be found in any computer vision text such as

Szeliski [23].

The steps associated with the perspective transformation are

illustrated in Figure 10. These steps are described in the

remainder of this section.

Figure 7. Illustration of the main idea of the predictive display. The top

shows how the original scene is projected onto the ground plane and far

plane. The bottom shows at a high-level how this information is used to

manipulate the video frame.

Original Image Projection
Operator
Image

Perspective
transform

Perspective
transform

Far
plane

Original
Image

Predicted
Image

Motion Ground
plane

Figure 8. Definition of the three coordinate systems used for the predictive

displays. The global system denoted by “0” represents the coordinates from

which the original frame was captured. The vehicle coordinate system

denoted by “1” (corresponds to B) represents the position of the vehicle after

2D seconds. The camera coordinate system “2” represents the location of the

camera with respect to the vehicle.

0

1

2

2’

x0

z0

y0

y1

x1

z1

y2

-x2

z2

Ground plane

Far plane

Figure 9. Camera model and coordinate system. The upper left figure

illustrates the location of the image plane in the camera coordinate system.
The lower-right figure illustrates the raster coordinates. The image plane and

raster correspond, but are measured in physical units and pixels respectively.

y2

x2

z2

1 m xR

yR
(H, W)

Physical units

Raster

hf

y2

x2

 ,

A B

C D

R

2

E F

A

B

C

D

E

F
2

Proceedings of the 2016 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)
UNCLASSIFIED: Distribution Statement A. Approved for public release; distribution is unlimited. (#28106)

Predictive Displays for High Latency Teleoperation
UNCLASSIFIED: Distribution Statement A. Approved for public release; distribution is unlimited. (#28106)

Page 6 of 16

Step 1: Mapping of points A, B, E, F
This step may be done in preprocessing as long as the

camera is fixed to the vehicle. First define camera parameters

such as field of view 𝜗 and aspect ratio 𝛼. The height and

width of the image plane are,

 𝑤 = 2 ta
𝜗

,

 ℎ = 𝛼𝑤, (11)

𝜑 = 2 ta −1

,

where 𝑤 and ℎ are the width and height (in meters) of the

image plane and 𝜑 is he vertical field of regard of the camera.

Capital letters 𝑊 and 𝐻 are used to denote the width and

height of the raster in pixels. In this case 𝑊 = 1,024 and 𝐻 =
768. Figure 11 illustrates the situation of the camera with

respect to frame “1” and also illustrates the location of the far

plane with respect to frame “1” when it coincides with frame

“0”. Let 𝜓 be the down angle of the camera and 𝒑𝑐 be the

position of the camera in frame “1”. Let 𝑑𝑓 be the distance

of the far plane from the origin of frame “0”. Furthermore let

𝜀 be the angle between the 𝑧 axis and the line traced from the

origin of “2” to the intersection of the ground and far planes.

Given these definitions, let the rotation matrix between

frames “1” and “2” be

 𝐑1
 = [

−1 0 0
0 − 𝜓 co 𝜓
0 −co 𝜓 − 𝜓

], (12)

and the homogeneous transformation be

 𝐇1
 = [

𝐑1
 𝒑𝑐

𝟎𝑇 1
]. (13)

The computation proceeds as follows. First, project image

plane points A and B (see Figure 12) onto the ground plane.

For point A, its position in the camera frame is 𝒗
𝐴 =

[−𝑤

2
ℎ
2 1]𝑇. To map A to the ground plane, the following

equation must hold for unknown 𝛾

 (𝒑𝑐 + 𝛾𝐑1
 𝒗

𝐴)𝑇𝒏𝑔 = 0, (14)

where 𝒏𝑔 is a vector normal to the ground plane. The solution

to this equation yields 𝛾 =
−𝒑𝑐,𝑧

𝒗1,𝑧
𝐴 . Where the z in the subscript

indicates that the z component of the vector is used. This then

yields

 𝒗0
𝐴 = 𝒑𝑐 + 𝛾𝐑1

 𝒗
𝐴. (15)

The same procedure is used for B. Next to find E and F, the

point E is used here. First, let 𝒗
𝐸 = [−𝑤

2
−ℎ
2 1]𝑇, then the

following equation must hold for unknown 𝜂

 (𝒑𝑐 + 𝜂𝐑1
 𝒗

𝐸 − 𝒑𝑓)
𝑇
𝒏𝑓 = 0, (16)

where 𝒑𝑓 is the vector to the intersection of the far and ground

plane and 𝒏𝑓 is a vector normal to the far plane. The solution

to this equation yields 𝜂 =
𝒉𝑓−𝒑𝑐,𝑦

𝒗1,𝑦
𝐸 . Where the y in the

subscript indicates that the y component of the vector is used.

This then yields

 𝒗0
𝐸 = 𝒑𝑐 + 𝜂𝐑1

 𝒗
𝐸. (17)

The same procedure may be applied to the point F.

Step 2: Mapping of points C & D
Unlike points A, B, E, F which were well-defined in the

camera frame but unknown in the global frame, points C and

D are fairly well defined in the global frame “0”, but not well

defined in the image frame. First observe that they need to be

on the edges of the image so their 𝑥 coordinate will be ±𝑤

2
 .

It can easily be shown that 𝜀 = ta −1 𝑑𝑓−𝒑𝑐,𝑦
𝒑𝑐,𝑧

+ 𝜓 − 𝜋

2
 (see

Figure 10. Flow chart for the image transformation for the predictive display.

1. Project points
(A, B, E, F) onto
the ground and
far planes.

2. Project
points (C, D)
onto the
image plane.

3. Look back in the
history of state
estimator 2D seconds
to find frame 0.

4. Compute the
homogeneous
transformation to
frame 1.

5. Project points
A-F back onto
the image
plane.

6. Define perspective
transforms:
(A,B,C,D)(A’,B’,C’,D’)
(C,D,E,F)(C’,D’,E’,F’)

7. Divide image at C-D
line and do perspective
transforms on upper
and lower halves.

8. Stitch the two
images back
together and
display to the user.

Figure 11. Side view of camera coordinate system and far plane position

when fames “0” and “1” coincide.

0,1

2

z0, z1

y0, y1

y2
z2

Ground plane

Far

plane

df

pc

𝜓

𝜀

Proceedings of the 2016 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)
UNCLASSIFIED: Distribution Statement A. Approved for public release; distribution is unlimited. (#28106)

Predictive Displays for High Latency Teleoperation
UNCLASSIFIED: Distribution Statement A. Approved for public release; distribution is unlimited. (#28106)

Page 7 of 16

Figure 11). It is straightforward to calculate ℎ𝑓 = ta 𝜀 (see

Figure 9). Then, let 𝒗
𝐶 = [−𝑤

2
ℎ𝑓 1]𝑇 and proceed with the

same method outlined in equations (14) and (16). The same

process applies to point D. This step may also be

precomputed as long as the camera and far plane are not

moving from time step to time step.

Step 3: Determine position evolution over 2D
This step recalls a prior state from the buffer so that a

relative position between the current and prior state may be

computed in the next step. The states stored in the buffer take

the following form [𝑥𝑘 𝑦𝑘 𝜃𝑘 𝑡𝑘] which includes the 3

degree of freedom position and the time at which the state was

computed. Assuming that the round trip time is known, which

is denoted as 𝜏, the algorithm looks back in the buffer 𝑖 steps

until 𝑡𝑘 − 𝑡𝑘−𝑖 ≥ 𝜏. When this condition is met, let 𝑗 = 𝑘 −
𝑖.

Step 4: Compute the transformation from frame 0
to 1

These two states (at sample k and j) are then encoded as

homogeneous transformations as

 𝐑𝐴
𝐵
𝑘,𝑗

= [

co 𝜃𝑘,𝑗 − 𝜃𝑘,𝑗 0

 𝜃𝑘,𝑗 co 𝜃𝑘,𝑗 0

0 0 1

], (18)

 𝒑𝑘,𝑗 = [𝑥𝑘,𝑗 𝑦𝑘,𝑗 0]𝑇, (19)

 𝐇𝐴
𝐵
𝑘,𝑗

= [
𝐑𝐴

𝐵
𝑘,𝑗

𝒑𝑘,𝑗

𝟎𝑇 1
], (20)

where the indices 𝑘, 𝑗 indicates that the computation is made

for 𝑘 and 𝑗 independently. The instantaneous transformation

between frames “0” and “1” is then

 𝐇0
1
𝑘

= 𝐇𝐴
𝐵
𝑗

−1
𝐇𝐴

𝐵
𝑘

 (21)

Step 5: Project points A-F back onto image plane.
For each of the points A-F and their corresponding global

positions 𝒗0
𝐴,…, 𝒗0

𝐹 computed in steps 1 and 2, they are

translated back into the camera frame as follows

 [𝒗
𝐴

1
] = 𝐇1

 −1
𝐇0

1
𝑘

−1
[𝒗0

𝐴

1
]. (22)

This yields the corresponding points A’-F’ in the camera

frame “2”, which are then converted to planar coordinates as

follows

 𝒖𝐴 = [
𝒖𝑥

𝐴

𝒖𝑦
𝐴] =

[

𝒗 ,𝑥

𝐴

𝒗 ,𝑧
𝐴⁄

𝒗 ,𝑦
𝐴

𝒗 ,𝑧
𝐴⁄

]

, (23)

where 𝒗
𝐴 = [𝒗 ,𝑥

𝐴 𝒗 ,𝑦
𝐴 𝒗 ,𝑧

𝐴]
𝑇
. Note that it is important to

place the far plane such that 𝑑𝑓 > 𝒑𝑐,𝑦 + 𝑣𝑚𝑎𝑥𝜏𝑚𝑎𝑥, where

𝑣𝑚𝑎𝑥 is the maximum velocity and 𝜏𝑚𝑎𝑥 is the maximum

round trip time so that the possibility of 𝒗 ,𝑧
𝐴 = 0 is physically

impossible. Finally once the desired points are obtained in

physical coordinates, the last step is to convert them to raster

coordinates (i.e. pixels) as follows.

 𝑥
𝐴 = 𝑢𝑥

𝐴 W

+

W

, (24)

 𝑦
𝐴 = 𝑢𝑦

𝐴 H

+

H

. (25)

where capitals (W, H) represent the size in pixels and lower

case (w, h) are physical units. The same procedure is used for

points B-F respectively. This process is illustrated in Figure

12. There the image plane is extended to permit the projected

points to fall outside of the bounds of the image. Figure 13

illustrates how the points move on the image plane

Figure 12. Points A through F are projected back from global frame “0” after

the vehicle’s movement represented by frame “1”. The point A maps to A’,
B to B’, etc. These points do not have to land in the actual image for the

transformation to work. To reduce clutter, only points A’ and B’ are shown.

0

1

2’

x0

z0

y0

y1

x1

z1

Ground plane

Far plane

A

B

C

D

E

F

Extended image

plane

A’
B’

Figure 13. Mapping of points A-F to A’-F’. Note that they will not typically

land back within the boundaries of the original image. These mappings will

be used to define two perspective transformations.

A B

C D

E F

A’

B’

C’
D’

E’ F’

Proceedings of the 2016 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)
UNCLASSIFIED: Distribution Statement A. Approved for public release; distribution is unlimited. (#28106)

Predictive Displays for High Latency Teleoperation
UNCLASSIFIED: Distribution Statement A. Approved for public release; distribution is unlimited. (#28106)

Page 8 of 16

Step 6: Define perspective transforms
In this step two perspective transforms are defined, one for

the ground plane which is uniquely defined by the mapping

(A, B, C, D) (A’, B’, C’, D’) and one for the far plane (C,

D, E, F) (C’, D’, E’, F’). The perspective transform for the

ground plane has the following form

 [𝑎𝒓
𝐴′

𝑏𝒓𝐵′
𝑐𝒓𝐶′

𝑑𝒓𝐷′

𝑎 𝑏 𝑐 𝑑
] = 𝐌𝐺𝑅𝐷 [

𝐴 𝒓𝐵 𝒓𝐶 𝒓𝐷

1 1 1 1
], (26)

and for the far plane,

 [
𝑒𝒓𝐶′

𝑓𝒓𝐷′
 𝒓𝐸′

ℎ𝒓𝐹′

𝑒 𝑓 ℎ
] = 𝐌𝐹𝐴𝑅 [

𝐶 𝒓𝐷 𝒓𝐸 𝒓𝐹

1 1 1 1
] (27)

where 𝐌𝐺𝑅𝐷 ∈ ℝ × , 𝐌𝐹𝐴𝑅 ∈ ℝ × and 𝑎,… , ℎ are arbitrary

constants. The perspective transform is computed using the

image processing library OpenCV [24]. Specifically the

function getPerspectiveTransform() is used to

compute the transform for both the ground and far plane.

Step 7: Split the image and transform each half.
In this step the image is split along the C-D line, with that

below associated with the ground plane and that above

associated with the far plane. These two sub-images are then

transformed using the learned perspective transforms 𝐌𝐺𝑅𝐷

and 𝐌𝐹𝐴𝑅. (Note that care must be taken to make sure that

the mapped points correspond to the divided image.) This is

done using the OpenCV warpPerspective() function.

This function maintains the bounds of the original image.

Clearly two things happen as illustrated in Figure 13. First

there are pixels which map outside of the bounds of the

original image; these points are lost in the destination image.

Second, there are pixels in the destination image which are

sourced outside of the bounds of the original image. In this

case, OpenCV paints these pixels black.

Step 8: Join the transformed images
Finally take the two sub-images and rejoin them and present

them to the user. This step is illustrated in Figure 14.

SIMULATION SETUP
The above design was implemented on two workstations

running Microsoft Windows 7 Professional 64 bit as shown

in Figure 15. They were connected via a gigabit Ethernet

LAN and passed all relevant information via the UDP/IP

protocol. Although these computers have the power to run

everything on one machine, they were run on two for a few

reasons. First, because this is a simulation, information is

very accessible. By running them on two different machines,

it is assured that only valid/relevant state is being shared (i.e.

no access to privileged information). The second is that

because information is passed over a physical network, it

provides well-defined “choke points” to monitor and/or

control network behavior. This gives ample opportunity to

control network performance via packet forwarding or the

insertion of a network emulator. In the following sections, the

Vehicle Sim and OCU Sim software design are described.

Vehicle Sim
The Vehicle Sim computer implemented the majority of its

software in SimCreator 3.0 which is a tool designed to

integrate simulation components using block diagrams [25],

[26], [27] and model multi-body dynamics. SimCreator

enables simulations to be distributed both on a computer and

across a LAN. In this case it was configured to run three

processes on the same machine as shown in Figure 16.

Information is passed between these processes by SimCreator

using the UDP/IP protocol on the machine.

The vehicle process did just as it says, it ran a real-time

vehicle dynamics model. The model was built in SimCreator

as shown in Figure 17. The model includes full suspension

Figure 14. Steps 7 & 8 shows splitting the image, performing the perspective

transform and then rejoining the image. Illustrated here is a perspective
transform indicated by a forward turn to the right. Notice that the black areas

represent pixels for which there is no source information.

Split

Transform

Join

Figure 15. Setup of the computers on which this long haul teleoperation was
configured. All of the state estimation and predictive display software as

well as the user interface ran on the OCU Sim. The vehicle dynamics, image

generator and video encoder ran on the Vehicle Sim computer. The

computers were connected to a Gigabit Ethernet LAN.

UDP: Commands,
estimates

UDP: H.264 Video

UDP: Vehicle state

OCU Sim Vehicle Sim

Proceedings of the 2016 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)
UNCLASSIFIED: Distribution Statement A. Approved for public release; distribution is unlimited. (#28106)

Predictive Displays for High Latency Teleoperation
UNCLASSIFIED: Distribution Statement A. Approved for public release; distribution is unlimited. (#28106)

Page 9 of 16

kinematics, power train and tire model. It also communicates

with a terrain model for roughness, grade and side slope

information. It is updated at 1,000 Hz and its states are

integrated using Runge-Kutta 4th order integrator. It receives

driver commands from the Comms process and provides

vehicle state information (to include position, velocity and

acceleration as well as orientation and rotational rates) to the

Comms and Graphics processes.

The Comms process manages UDP communications to the

OCU Sim computer. It receives UDP packets from the OCU

Sim according to the structure shown in Listing 1. In that

structure is a monotonically increasing packet number and a

time stamp. The time stamp is sent back by the vehicle so the

OCU can estimate round trip time. Vehicle commands

include throttle, brake, steer and gear. Finally, the estimated

states of speed and yaw rate are sent to the vehicle for

computation of the error. The OCU Sim generated these

packets at 100 Hz. This received OcuToVehicle packet is

a good place to insert a network performance model and the

Comms process does just that by enqueuing these packets in

a FIFO buffer along with their associated time stamps. They

are released from the FIFO queue when they have been

waiting for at least 𝜏 seconds.

When released from the FIFO queue, the Comms process

responds by immediately sending out a packet with the

structure shown in Listing 2. This contains the received

packet number and time stamp as well as the local time stamp.

This is used to synchronize time between the two machines.

The video frame number and video frame time are sent for

tracking purposes. It contains the orientation (only pitch is

used), the angular rates (only yaw rate is used) and speed.

Finally, it contains the errors which were computed based on

the sent speed and yaw rate estimates. It was previously

established that computing error on the vehicle side is a

simple and effective way to assure that it is not affected by

time skewing of the signals.

The Graphics process renders the view that the camera sees.

It takes in a terrain database model in Open Flight or VRML

format and then renders the view based on position and

orientation, which it receives from the Vehicle process. It

Figure 16. Blocks representing three processes for the Vehicle Sim. Comms

performed UDP communication and network delay modeling, Vehicle

contained the multibody vehicle dynamics of the HMMWV used for the
UGV, and Graphics ran the graphical rendering engine and communicated

with another process via shared memory which ran the video encoding.

Figure 17. HMMWV vehicle model built in SimCreator.

struct OcuToVehicle

{

 // General information

 int packetNo; // Incremental count

 unsigned int ocuTime; // Time stamp

 // Vehicle commands

 float throttle; // [0,100]

 float brake; // [0,100]

 float steer; // [-100,100]

 int gear; // Enumerated {1,2,3,4}

 // Estimated states

 float vHat ; // Estimated speed in m/s.

 float yawRateHat; // Estimated yaw rate in rad/s.

};

Listing 1. Information sent from OCU to Vehicle.

struct VehicleToOcu

{

 // Synchronization information

 int retPacketNo; // Returned packet number.

 unsigned int retOcuTime; // Returned time.

 unsigned int vehTime; // Vehicle local time.

 // Video information

 int lastFrame; // Number of last frame.

 int frameTime; // Time of last frame.

 // IMU Data

 float orientation[3]; // R, P, Y, rad

 float omega[3]; // Rotational rates, rad/sec

 float speed; // Speed in m/s, body fixed

 // Computed errors

 float eSpeed; // Speed error

 float eYawRate; // Yaw rate error

};

Listing 2. Information sent from Vehicle to OCU.

Proceedings of the 2016 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)
UNCLASSIFIED: Distribution Statement A. Approved for public release; distribution is unlimited. (#28106)

Predictive Displays for High Latency Teleoperation
UNCLASSIFIED: Distribution Statement A. Approved for public release; distribution is unlimited. (#28106)

Page 10 of 16

renders a scene at a rate of 30 Hz at XGA resolution. These

frames are rendered both on the screen and to a bit map for

video encoding by a separate process.

For reasons beyond the scope of this paper, the video

encoder was written outside of SimCreator. It is coded in

C++ as a stand-alone process which communicates with the

Graphics process via shared memory (using the Boost C++

Library [28]). It uses the FFmpeg [29] video

encoding/decoding library to encode the video frames being

passed over the shared memory. The H.264 encoder is used

with the parameters shown in Table 1. For every frame output

by the encoder, the information is manually chopped into

1,300-byte chunks and then sent via a UDP socket to the OCU

computer. (Note that the FFmpeg avio_write() was not

used because it only sends full UDP packets.)

OCU Sim
The OCU Sim computer runs in a single process written in

C++. It employs the FFmpeg library for video decoding and

the OpenCV library for the image processing. Additional

components are the state estimator and the UDP

communications. The code runs in two threads. The first

thread runs the FFmpeg decoding and the OpenCV image

processing. This first thread is event driven. It continually

decodes the video stream as packets are received and then

when it has a new frame, it runs the predictive display code

and then displays that to the user. The second thread is a

periodic loop which runs at 100 Hz. It updates the state

estimator and then sends a UDP packet containing the

information in Listing 1 to the vehicle. In its idle time, it also

continually polls for return packets from the vehicle. When it

receives a packet it updates its internal information to be used

by the state estimator and the predictive display.

Timing
Figure 18 illustrates the data flow and timing of the

predictive display system in a causal way. The timing and

data flow are one instance of a process that occurs over and

over again. The flow of information starts with a command

being issued by the operator 1 (which occurs at 100 Hz)

which then flows to the vehicle and to the state estimator 2 .

The arrival of the driver command immediately triggers a

response in which the vehicle sends its state information and

error back to the estimator 3 . The driver command

information 2 also affects the velocity and position of the

vehicle and subsequently the camera 4 , which runs

independently and captures frames at 30 Hz. Between events

4 and 5 the frame is encoded (Note that with GOP size of

25, most frames are P frames which require some amount of

processing), chopped into UDP packets, sent to the OCU, and

then reassembled and decoded into a video frame. At event

5 (which is triggered by a new video frame) the OCU uses

the state estimator to perform the predictive display image

manipulation and then renders the frame to the operator, thus

completing the cycle at event 6 .

EXPERIMENTAL RESULTS
The system which was described in the preceding section,

was run experimentally by the author and these results are

discussed in this section. The experiments were run on a flat

terrain database which consists of four different types of tiles

which are 200 m x 200 m each. These tiles consist of a

straight section, a 75 m radius right turn, a 75 m radius left

turn and an ‘S’ turn (which has six curves of 20 m radius

each). A wire frame diagram of the terrain is shown in Figure

19. The course was negotiated in a clock-wise diection,

starting on the far right (east) portion facing down (south) as

shown in Figure 19. The operator’s goal is to to stay in the

right lane which has a width of 4 m. Speed on the course is

regulated by means of speed limit signs which are as follows.

Preceeding each right or left turn with 75 m radius, there is a

30 mph (48 kph) speed limit sign, preceeding each ‘S’ turn

there is a 15 mph (24 kph) speed limit sign and preceeding

each straight section of length of two tiles there is a 40 mph

(65 kph) speed limit sign. The course is approximately 5.8

km (3.6 miles) long and takes approximately 10 minutes to

Table 1. FFmpeg H.264 Encoder Parameters.

GOP Size 25

Bit rate 4,000,000

Resolution 1024x768

Time Base (N/D) 1/30

Max B Frames 0

Option: “tune” “zerolatency”

Figure 18. Timing diagram sowing the major components and a causal chain

of events which start with a driver command and end with a display rendered
to the operator. Also show are the flow of information between the major

components. The top two blocks (Estimator & OCU) run on the OCU Sim

and the bottom two blocks (Vehicle & Camera) run on the Vehicle Sim.

Lines trace data flows. Time proceeds from left to right.

Estimator

Vehicle

OCU

Camera
Commands
State updates
Position update

Video Processing
Video Transmission
Predicted Position

Display Prediction

1

2

2

4

3

5 6

Proceedings of the 2016 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)
UNCLASSIFIED: Distribution Statement A. Approved for public release; distribution is unlimited. (#28106)

Predictive Displays for High Latency Teleoperation
UNCLASSIFIED: Distribution Statement A. Approved for public release; distribution is unlimited. (#28106)

Page 11 of 16

complete one circuit around the course. The advantage of a

tile-based terrain is that a participant is subject to the same

circumstance at multiple times through the course which

multiplies the statistical sample size if one wishes to examine

particular events. In particular this terrain contains 14 straight

sections, 9 right turns, 5 left turns, and 2 ‘S’ turns.

The experiments consisted of three configurations as shown

in Table 2. Configuration 1 with no additional latency and no

predictive display is intended to represent the best possible

scenario and should produce the best case. Configuration 2

on the other hand is intended to represent the baseline case

where latency is present but it is not actively mitigated. This

may be thoughof as the worst case baseline performance from

which to improve. Configuration 3 maintains the same

latency as configuration 2 however, the predictive display is

added. For each configuration, five experimental runs were

made. They were run in order of configuration with five of

configuration 1, then five of configuration 2, etc.

(Configuration 2 had one additional aborted run because the

vehicle “crashed” partway through the run.)

Data collected during the experiments consisted of four data

logs associated with the OcuSim and the three processes run

on the VehicleSim. On the OCU the data were logged at 100

Hz and on the VehicleSim the data were logged at 1,000 Hz.

Most of the results hereafter presented speak to the

effectiveness of the predictive display vs. the unmitigated

case. The traces of the x-y position of these runs are

illustrated in Figure 20. Since the section of the terrain where

the simulation starts and ends has inconsistencies such as start

time, stop location, etc., the data analysis omits the fist portion

of the run (i.e. analysis starts with the second tile), likewise,

the same tile is omitted from the end of the analysis, so when

the vehicle enters this tile data analysis stops. The key metrics

of interest in teleoperation are speed and accuracy where both

should be maximized. (These are normally mutually opposed

objectives.) In this analysis, accuracy is tracked using two

metrics, namely path deviation and heading deviation (these

are error metrics, so lower is better). The target path is not

marked on the road but is regarded as the center of the 4 m

wide right lane. The road way is defined by points along the

center of the road, and the desired path is 2m to the right of

Figure 19. A wire-frame top-down view of the terrain database used for the
experimental runs. The database consists of a 6 by 8 grid of 200m square

tiles consisting of straight, left, right and ‘S’-turn tiles. The starting location

is denoted with the green circle and the direction of travel with the arrow.

Table 2. Experimental Configurations.

Configuration Added Latency Predictive Display

1 0 ms No

2 500 ms No

3 500 ms Yes

Figure 20. The path driven for all 15 experimental runs. Note the omission

of analyzed data from the first tile (outlined as a dashed square).

Figure 21. Speed traces for the 15 record runs vs. distance driven. Top is no

delay, no Predictive Display (PD), middle is 500 ms of added delay, no PD,

bottom is 500 ms of added delay with PD.

Proceedings of the 2016 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)
UNCLASSIFIED: Distribution Statement A. Approved for public release; distribution is unlimited. (#28106)

Predictive Displays for High Latency Teleoperation
UNCLASSIFIED: Distribution Statement A. Approved for public release; distribution is unlimited. (#28106)

Page 12 of 16

the center of the road. Path heading error is measured as the

angle difference between the path tangent and the vehicle

heading direction. Speed is measured as the average speed

along the course. The raw data recorded for each of the three

configurations is shown in Figure 21 for the veicle speed,

Figure 22 for the path deviation, and Figure 23 for the path

heading error. With respect to speed, it is clearly seen that the

speed degrades severely between the first and second

configuration, with the unmitigated delay case demonstrating

severe inconsistency in run-to-run speeds over the course.

The author believes that this is because so much attention has

to be paid to steering the vehicle, that the operator pays less

attention to speed. The bottom plot in Fiure 21 demonstrates

that speed consistency is imporoved since the predictive

display makes steering the vehicle less intense.

Figures 22 and 23 adress accuracy. Figure 22 shows path

deviation which is the vehicle’s distance from the center of

the lane. This metric obviously directly relates to accuracy

and gives an intuative sense as to how well the operator is

keeping to his lane. Given that the vehicle is narrower than

the lane, it is possible that the operator has a non-zero

deviation but is still in the lane. Figure 23 shows the

directional error as this indicates how well the operator is

maintaining vehicle direction along the path. It is also an

indicator of the ability (or inability) of the operator to attain

and maintain a desired directional heading.

To get a qualitative sense as to how these metrics compare,

the mean speeds are charted in Figure 24. There it is clear

that the predictive display helps the operator achieve nearly

the same average speed as the best case. In the case of

configuration 2 a gradual rise in attained average speed is

observed as the runs progress from run 1 to run 5. This is an

indicator that an operator can adapt or train to a condition of

high latency and as such improve performance. For a

quantitative sense of the error, both the path deviation and the

heading error are integrated over the path length (this metric

is used in other TARDEC teleoperation work) as follows:

 ∫ |𝑒𝑝(𝑠)|𝑑𝑠
𝐿

0
 (28)

where 𝐿 is the length of the course under analysis

(approximately 5,600 m) and 𝑒𝑝(𝑠) is the path deviation as a

function of path length 𝑠. Likewise the metric for heading

error is computed as

Figure 22. Path deviation traces for the 15 record runs vs. distance driven.
Top is no delay, no Predictive Display (PD), middle is 500 ms of added delay,

no PD, bottom is 500 ms of added delay with PD.

Figure 23. Path heading error traces for the 15 record runs vs. distance

driven. Top is no delay, no Predictive Display (PD), middle is 500 ms of

added delay, no PD, bottom is 500 ms of added delay with PD.

Figure 24. Mean speeds for the 15 runs. First five represent configuration 1,
second five represent configuration 2, and the third represents configuration

3.

Distance [m]

Proceedings of the 2016 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)
UNCLASSIFIED: Distribution Statement A. Approved for public release; distribution is unlimited. (#28106)

Predictive Displays for High Latency Teleoperation
UNCLASSIFIED: Distribution Statement A. Approved for public release; distribution is unlimited. (#28106)

Page 13 of 16

 ∫ |𝑒 (𝑠)|𝑑𝑠
𝐿

0
 (29)

where 𝑒 (𝑠) is the heading error. The value of these two

metrics are plotted in Figures 25 and 26. For the configuration

2 it is observed that the trend is for the operator to drive more

accurately from run to run. This is likely due to a training

effect. These results are also shown in Table 3 where the

relative improvement obtained by the predictive display over

the case without the predictive display is demonstrated. The

addition of the latency reduces the average speed from 46.5

kph to 32.5 kph (a 30% reduction) and the predictive display

helps recover the speed lost due to latency indicating a 9%

penalty in achieved speed. Regarding accuracy, it is observed

in Table 3 that both metrics severely degrade with the addition

of latency (148% for path deviation and 180% for heading

deviation). For the predictive display the accuracy degrades,

but not as severely. To gauge the benefit of the predictive

display, its performance to the case without (configuration 2)

is now compared. As shown in Table 3, the predictive display

increases the overall speed by 29% and reduces the path

deviation and heading error by 35% and 42% respectively.

Finally, error is compared to the difference between the best

and worst case as is done Zheng, et al. [15]. Using this

normalized metric, the predictive display yields a 69%

improvement in speed, a 59% improvement in path deviation

and a 65% improvement in heading error.

This discussion concludes with some screen captures of an

experimental run. Figures 27-30 show four screen captures

on the course from configuration 3 (500 ms of delay with

predictive display operational). Figure 27 shows operation on

a straight section of the course. In this case the operator is

driving on the ground plane and is moving toward the far

plane. Although not entirely clear, the far plane occupies

approximately 60% of the image and the ground plane

occupies approximately 40% of the image. While in a mild

turn, as illustrated in Figure 28, the predictive display still fills

the whole image because the operator is driving into the scene

which provides some margin of the far and ground plane to

be displayed during mild turns (as illustrated in Figure 7).

This is not the case for sharp turns such as the ‘S’ turn portion

Figure 25. Integrated path deviation for the 15 runs. First five represent
configuration 1, second five represent configuration 2, and the third

represents configuration 3.

 Figure 26. Integrated heading error for the 15 runs. First five represent
configuration 1, second five represent configuration 2, and the third

represents configuration 3.

Table 3. Results from experimental runs. The third and fourth column show performance and the percent difference in performance as compared to the best case

(i.e. configuration 1). The fifth column represents the improvement realized by the predictive display for the 500 ms delay case (i.e. configuration 3 compared to
configuration 2). The sixth and last column represents the normalized improvement as is done by Zheng, et al. in [24].

 Config. 1

Config. 2

(% difference

to config. 1)

Config. 3

(% difference

to config. 1)

Improvement

of PD

Normalized

Improvement

of PD

Delay [ms] 0 500 500

Predictive Display N N Y

Average Speed [kph] 46.5 32.5 (-30%) 42.2 (-9%) 29% 69%

Average Integrated Deviation [m2] 1940 4816 (+148%) 3110 (+60%) 35% 59%

Average Integrated Heading Error [deg-m] 126 353 (+180%) 204 (+62%) 42% 65%

Proceedings of the 2016 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)
UNCLASSIFIED: Distribution Statement A. Approved for public release; distribution is unlimited. (#28106)

Predictive Displays for High Latency Teleoperation
UNCLASSIFIED: Distribution Statement A. Approved for public release; distribution is unlimited. (#28106)

Page 14 of 16

of the terrain as illustrated in Figures 29 and 30. In these cases

the manipulated image does not have content to represent the

portion of the scene that it turned into. This will be mitigated

in future by capturing a wider field of view than is presented

to the operator.

CONCLUSIONS
In this paper a scheme for the mitigation of latency in the

teleoperation of a UGV was presented. A state estimator was

developed which has both feedforward and feedback

functions to estimate the position of the vehicle over the round

trip network delay. This information was used to manipulate

the video frames being sent from the vehicle to the OCU to

render a best estimate of what the operator would see in the

no delay case. The implementation of this scheme in a

simulation environment was then described. Preliminary

experimental results were presented in which the predictive

display was shown to be an effective method for the

mitigation of latency by increasing achieved speed and by

reducing the path deviation and the heading error

significantly. By implementing predictive displays as a

mitigation of latency in teleoperation, a minimally invasive

approach to teleoperation was developed which has the

potential for broad application to several UGV types and

missions.

REFERENCES

[1] M. Brudnak, M. Pozolo, V. Paul, S. Mohammad, W.

Smith, M. Compere, J. Goodell, D. Holtz, T. Mortsfield

and A. Shvartsman, "Soldier/Hardware-in-the-loop

Simulation-based Combat Vehicle Duty Cycle

Measurement: Duty Cycle Experiment 2," in SISO

Figure 27. View of predictive display while on straight section.

 Figure 28. View of predictive display while on 75 m radius turn.

Figure 29. View of predictive display while on sharp left turn in the ‘S’

turn section (20 m radius).
 Figure 30. View of predictive display while on sharp right turn in the ‘S’

turn section (20 m radius).

Proceedings of the 2016 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)
UNCLASSIFIED: Distribution Statement A. Approved for public release; distribution is unlimited. (#28106)

Predictive Displays for High Latency Teleoperation
UNCLASSIFIED: Distribution Statement A. Approved for public release; distribution is unlimited. (#28106)

Page 15 of 16

Simulation Interoperability Workshop, Spring,

Orlando, FL, 2007.

[2] D. Cobzas and M. Jagersand, "Tracking and Predictive

Display for a Remote Operated Robot using

Uncalibrated Video," in Proceedings of the 2005 IEEE

International Conference on Robotics and Automation,

ICRA 2005, 2005.

[3] R. Held, A. Efstathiou and M. Breene, "Adaptation to

displaced and delayed visual feedback from the hand,"

J. Exp Psych, vol. 72, pp. 871-891, 1966.

[4] M. Brudnak, M. Pozolo, A. Meldrum, T. Mortsfield, A.

Shvartsman, W. Smith, J. Goodell and D. Holtz,

"Virtual Combat Vehicle Experimentation for Duty

Cycle Measurement," SAE Int. J. Commer. Veh., vol. 1,

no. 1, pp. 54-70, 2009.

[5] V. Paul, M. Brudnak, J. Ueda and A. Shvartsman,

"Simulation-based Hybrid-Electric Combat Vehicle

Duty Cycle Measurement," in Intelligent Vehicle

Systems Symposium, NDIA, Traverse City, MI, 2006.

[6] M. Simon, M. Compere, T. Connolly, C. Lors,

W. Smith and M. Brudnak, "Hybrid Electric Power and

Energy Laboratory Hardware-in-the-Loop and Vehicle

Model Implementation," in SAE World Congress,

Detroit, MI, 2006.

[7] T. Ersal, R. B. Gillespie, M. Brudnak, J. L. Stein and H.

K. Fathy, "Effect of coupling point selection on

distortion in internet-distributed hardware-in-the-loop

simulation," in American Control Conference, San

Francisco, CA, 2011.

[8] T. Ersal, M. Brudnak, J. L. Stein and H. K. Fathy,

"Statistical transparency analysis in internet-distributed

hardware-in-the-loop simulation," IEEE/ASME

Transactions on Mechatronics, vol. 17, no. 2, pp. 228-

238, 2012.

[9] T. Ersal, M. Brudnak, A. Salvi, J. L. Stein, Z. Filipi and

H. K. Fathy, "Development and model-based

transparency analysis of an Internet-distributed

hardware-in-the-loop simulation platform,"

Mechatronics, vol. 21, no. 1, pp. 22-29, 2011.

[10] T. Ersal, Y. Kim, A. Salvi, J. Siegel, A. Stefanopoulou,

J. L. Stein, M. J. Brudnak and Z. Filipi, "A method to

achieve high fidelity in internet-distributed hardware-

in-the-loop simulation," in NDIA Ground Vehicle

Systems Engineering and Technology Symposium,

Troy, MI, 2011.

[11] T. Ersal, M. Brudnak, A. Salvi, Y. Kim, J. B. Siegel and

J. L. Stein, "An Iterative Learning Control Approach to

Improving Fidelity in Internet-Distributed Hardware-

in-the-Loop Simulation," Journal of Dynamic Systems,

Measurement, and Control, vol. 136, no. 6, 2014.

[12] X. Ge, M. Brudnak, J. L. Stein and T. Ersal, "A Norm

Optimal Iterative Learning Control Framework towards

Internet-Distributed Hardware-In-The-Loop

Simulation," in American Control Conference,

Portland, OR, 2014.

[13] A. Tandon, M. J. Brudnak, J. L. Stein and T. Ersal, "An

observer based framework to improve fidelity in

internet-distributed hardware-in-the-loop simulations,"

in Dynamic Systems and Control Conference, Palo

Alto, CA, 2013.

[14] X. Ge, Y. Zheng, M. J. Brudnak, P. Jayakumar, J. L.

Stein and T. Ersal, "Performance Analysis of a Model-

Free Predictor for Delay Compensation in Networked

Systems," in IFAC Time Delay Systems Workshop, Ann

Arbor, MI, 2015.

[15] Y. Zheng, M. Brudnak, P. Jayakumar and T. Ersal, "An

Experimental Evaluation of a Model-Free Predictor

Framework in Teleoperated Vehicles," in 13th IFAC

Workshop on Time Delay Systems, Istanbul, 2016.

[16] X. Ge, M. Brudnak, P. Jayakumar, J. L. Stein and T.

Ersal, "A Model-Free Predictor Framework for Tele-

Operated Vehicles," in American Control Conference,

Chicago, IL, 2015.

[17] F. Chucholowski, S. Buchner, J. Reicheneder and M.

Lienkamp, "Prediction Methods for Teleoperated Road

Vehicles," in Conference on Future Automotive

Technology - Focus Electromobility, Munich,

Germany, 2012.

[18] F. Chucholowski, M. Sauer and M. Lienkamp,

"Evaluation of Display Methods for Teleoperation of

Road Vehicles," in 9th International Conference on

Intelligent Unmanned Systems, 2013.

[19] D. Lovi, N. Birkbeck, A. H. Herdocia, A.

Rachmielowski, M. Jagersand and D. Cobzas,

"Predictive Display for Mobile Manipulators in

Unknown Environments Using Online Vision-based

Monocular Modeling and Localization," in

Proceedings of the IEEE/RSJ International Conference

on Intelligent Robots and Systems, 2010.

[20] A. Rachmielowski, N. Birkbeck and M. Jägersand,

"Performance evaluation of monocular predictive

display," in Robotics and Automation (ICRA), 2010

IEEE International Conference on, Anchorage, AK,

2010.

[21] E. Royer, M. Lhuillier, M. Dhome and J.-M. Lavest,

"Monocular Vision for Mobile Robot Localization and

Autonomous Navigation," International Journal of

Computer Vision , vol. 74, no. 3, p. 237–260, 2007.

[22] A. Kelly, N. Chan, H. Herman, D. F. Huber, R. Meyers,

P. Rander, R. Warner, J. Ziglar and E. capstick, "Real-

Proceedings of the 2016 Ground Vehicle Systems Engineering and Technology Symposium (GVSETS)
UNCLASSIFIED: Distribution Statement A. Approved for public release; distribution is unlimited. (#28106)

Predictive Displays for High Latency Teleoperation
UNCLASSIFIED: Distribution Statement A. Approved for public release; distribution is unlimited. (#28106)

Page 16 of 16

Time Photorealistic Virtualized Reality Interface for

Remote Mobile Robot Control," in Proceeding of

International Symposium of Robotics Research, 2009.

[23] R. Szeliski, Computer Vision: Algorithms and

Applications, New York: Springer, 2010.

[24] Itseez, Inc., "OpenCV," [Online]. Available:

http://opencv.org/. [Accessed 23 May 2016].

[25] Realtime Technologies, Inc, "SimCreator," Realtime

Technologies, Inc., 2016. [Online]. Available:

http://simcreator.com/simcreator/simcreator.htm.

[Accessed 6 May 2016].

[26] R. Romano, "Realtime Driving Simulation Using A

Modular Modeling Methodology," in SAE World

Congress, Detroit, MI, 2000.

[27] R. Romano, "Real-Time Multi-Body Vehicle

Dynamics Using a Modular Modeling Methodology,"

in SAE World Congress, Detroit, MI, 2003.

[28] B. Dawes, D. Abrahams and R. Rivera, "Boost C++

Libraries," May 2016. [Online]. Available:

http://www.boost.org/. [Accessed 6 May 2016].

[29] F. Bellard, "FFmpeg," 2016. [Online]. Available:

http://ffmpeg.org/. [Accessed 10 May 2016].

